
Acceleration Based RC Toy Car Controller

Kazumi Malhan, Justen Beffa

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

Emails: kmalhan@oakland.edu, jbbeffa@oakland.edu

Abstract—this document will outline the hardware and

software design choices implemented in order to create a

motion controlled wireless remote controlled toy car. Based on

moving a remote forward, back, left or right a user will see

these movements mirrored in a toy car.

I. INTRODUCTION

Many remote controlled cars operate by pressing buttons on
a controller. Instead of analog buttons, an acceleration based
motion controller is desired. The motion controller will have
parity of movement between it and the car it controls. Due to
timing limitations the RC car itself was not designed here.
This project takes an existing RC car and its original
controller and modifies its controller in order to accept this
new input and see the desired affect.

To achieve this type of control two microcontrollers are
needed. One microcontroller is needed on the motion-
controlled remote in order to read, digitize, and send out the
data from the accelerometer. Another is used to process the
data sent from the controller and generate the appropriate
controlling code such that the car is driven in the desired
directions. Here the processing of these signals should be fast
enough such that the user feels they have real time control of
the vehicle, but not so fast that unwanted movements are
reflected in the vehicle.

II. METHODOLOGY

A. Hardware Circuit on HCS12 Board

Bluetooth Serial Connection

The SparkFun Bluetooth Mate Silver module is used to

replace the otherwise wired connection that would be

required to communicate with the Arduino microcontroller.

The communication to the Arduino is performed via SCI1.

Rx pin (SP2) is connected to Tx pin of Bluetooth module

while and Tx pin (PS3) is connected to Rx pin of Bluetooth

module. The module was powered with 5V on-board supply

and GND pin connected to ground.

CD4007 MOSFET Array

The original design of the RC Car Controller used four

buttons to send a signal to a control chip(PT8A977B). Each

button was assigned a directional pin on the control chip

(forward, back, left, or right). Essentially by grounding the

connection to control chip; the chip would then send the

appropriate signal through an antennae to the car and move

the car in the desired direction. In order to achieve the same

affect of the button grounding the pin, N channel MOSFTs

configured in Open Collector configuration provide the

same affect. This design was chosen because the gate of the

NMOS could be controlled by one of the HCS12’s GPIO

pins. Similar to the affect of pressing a button on the

original controller, the HCS12 drives four pins that will

either ground the connection to the control chip or keep the

connection open. In this way when the HCS12 interprets the

signal from the motion controller, the HSCS12 can then

send the correct commands to the remote controlled car.

Instead of using four individual NMOSs two CD4007

MOSFET Arrays are used here to provide the four open

collector MOSFETs.

B. Software on HCS12

SCI1 Initialization

SCI0 Initialization

LED Initialization

Global Variable Initialization

PORTA Configuration

Clear I bit in CCR

The flow chart above shows the setup sequence of HCS12
software. First, both Serial Communication Interface (SCI) 1
and SCI0 are initialized at rate of 9600 bps. The SCI1 is for
communication between Arduino, and the SCI0 is for
debugging and could be connected to a PC. PORTB is set as
an output and then the lEDs are configured. PORTA is
configured as output to control the signals to the MOSFET.
Lastly, I bit in CCR register is cleared to allow interrupts.
Coding for the HCS12 is done using the concept of
modularity, SCI1, SCI0 and LED related codes are placed in
separated header and implementation files, and then included
to main file. Inside main for loop, CPU checks for
performTask flag that triggers the processing of received
data.

In order to continuously receive the accelerometer readings
via SCI1 during operation, a receive serial interrupt has been
setup. To enable this feature, SCI1CR2 RIE bit (bit 2) must
be set to 1. One noticeable point is that SCI interface only
has single interrupt flag for both transmitter and receiver. It
is necessary to check which caused the flag to raise inside
the SCI interrupt service routine. The vector number for
SCI1 is 21. Inside the interrupt service routine (ISR), RDRF
flag is checked at the beginning to confirm the source of flag,
and copies the received byte into array of size 4. Since it is
agreement between HCS12 and Arduino that one sample
data consists of 4 bytes, array size is defined to be 4 via
macro. When index of array reaches last element and
doneTask flag is on, IRS copies the content of array into
separate array for further data processing by other function
that run in main. The doneFlag is an indication from data
process function that process has completed. By having this
feature, SCI1 continuously updates the accelerometer data,
and provides the latest to only when data process function is
ready to take. Lastly, IRS sets the performTask flag and exit
the function.

Process_Data is the function that performs data manipulation
and outputs appropriate signal to PORTA to control the
MOSFITS. First, received data are formatted back from four
numbers of unsigned char to two numbers whose data type is
unsigned int. Next, based on the threshold value calibrated
during the testing phase, the function goes through flow

control and decide what combination of output be sent to
PORTA. The flow chart above shows the decision flow.
First, forward, backward, stop is determined using x-axis
acceleration. For each option, it checks the z-axis
acceleration to determine left, right, or straight. Finally, the
output combination defined in macro is outputted. Same
output is also displayed on 8 LEDs to visualize the current
command. The output pin assignment is defined as follow.

7 6 5 4 3 2 1 0

- Right - Left - Backward - Forward

Software on HCS12 is designed to avoid using magic
numbers. All parameters including threshold value, size of
array, output commands, are defined in macro and macro are
used inside the program. This allows programmer to fix the
code with minimum effort in case of logic correction.

C. Hardware Circuit on Arduino Board

Arduino Uno

Due to its simpler

architecture, fewer GPIO

pins, and overall smaller

size than the HS12, an

Arduino Uno was chosen

to be the microcontroller

that converts the

acceleration readings to a

digital signal and then

passes that signal via

serial communication to

an HCS12

microcontroller. The

image below shows the

image of an Arduino Uno, and highlighted are the pins that

were used in this project.

Analogue to Digital Conversion

The Arduino Uno comes equipped with an ADC with six

channels. For the purposes of reading acceleration on the x

and z axis of the accelerometer, only the channels A0 and

A4 are needed. The ADC will give an 10bit number as its

output, so an integer is required to store its value

The ADXL335 is a three-axis accelerometer. Due to its

placement on the board movement along its x-axis

correlates to user movements for car forward or backwards

commands. Movement along the z-axis correlates to user

movements for car left or car right commands. The

accelerometer outputs a continuous analogue voltage, which

is related to the gravitational force it is experiencing on that

axis. Reasonable movements that the motion controller

could expect at each axis will produce readings between -1

g and 1 g. This roughly relates to 1.9 Volts and 1.3 Volts, or

380 and 300 digital reading. The schematic below shows

FORWARD BACKWARD STOP

L R

STRAIGH

T

L R

STRAIGHT

L R

STRAIGH

T

BEGIN

how the ADXL335 was wired. VCC is the onboard 3.3 V

supply, and the x channel is connected to ADC A0 and the z

channel connected to ADC A4.

Bluetooth Serial Connection

Additionally a SparkFun Bluetooth Mate Silver module is

used to replace the otherwise wired connection that would

be required to communicate with the HCS12. This module

was configured to communicate at 9600bps and was also set

a the master of the two Bluetooth modules used. The VCC

pin is connected to the Arduino’s 5V power supply, its Rx

pin connected to the board’s Tx pin and vise versa.

D. Software on Arduino

The flow chart below shows the progression of the program

that is running on the Arduino Uno. After the Analogue to

Digital pins are configured a setup function runs and

establishes serial communication to occur at 9600bps.

Additionally the set up functions sends a command to the

Bluetooth module to connect to the slave module on the

HCS12. After this the program enters the main loop, this

loop will continue indefinitely.

Inside of the main loop temporary storage variable and a

counter are initialized as is an array that will be used to

transmit the x and z axis readings to the HCS12. The main

loop then sums ten digital readings from each axis and takes

the average of the readings. This process takes about 10ms.

This approach was chosen to prevent erratic movements or

noise from causing unwanted commands being sent to the

car. Once the average is stored in an int variable, but the

serial communication is set to send out and read a byte at a

time. To accommodate this the int average from each axis is

split into its most and least significant byte. These bytes are

stored in a data array and the array is then sent to HCS12.

Then the process of reading, averaging, storing and sending

the accelerometer readings begins again.

III. HARDWARE SCHEMATICS

See Appendix A for HCS12 sensors schematics.

See Appendix B for Arduino sensors schematics.

See Appendix C for wiring on toy controller.

IV. EXPERIMENTAL SETUP

The incremental testing approach is a method to test each

component as they are being developed. For this project,

this method is critical as the project contains two

microcontroller with different types of sensors.

Phase 1 development consists of reading an accelerometer

using the ADC on Arduino. The serial monitor on Arduino

was used to read the values from an accelerometer, and

converted to gravity (g) reading to confirm the functionality

of the accelerometer and code. Also, threshold values were

defined in the process. Phase 2 consists of HCS12 side of

code development. Testing HCS12 code was done by

receiving fixed combination of numbers from Arduino

board using SCI1 while displaying processed information to

terminal on PC using SCI0 for debugging. At this stage,

communication between Arduino and HCS12 was done

using wired connection.

Once functionality of each microcontroller was tested,

system level testing (Phase 3) was performed using wired

connection. In order to debug, output command is displayed

on LEDs using PORTB, and received valued are checked on

PC via SCI0. Phase 4 was paring of two Bluetooth modules.

The configuration of master module and slave modules were

performed on Arduino microcontroller via serial and

software serial communication. Final stage of testing (Phase

5) was to combine phase 3 and 4. Similar debugging method

used in phase 3 was utilized. At the end, incremental testing

approach paid off and system performed as expected.

V. CHALLENGES

Bluetooth Serial Connection

One challenge that was faced was achieving the wireless

serial connection between two modules. In class examples

were given on how to achieve a connection between one

module and a PC. Originally the components that were

purchased could only operate in slave mode, meaning a

connection could not be established between the two

modules. After the SparkFun Bluetooth Mate Silver

modules were purchased the major challenge was in

accessing the modules AT commands and configuring them

to operate at 9600bps and to connect on a restart of the

boards they would be connected to.

Arduino IDE Serial Library

Unlike the C language code that is used to achieve serial

communication on the HCS12, the serial communication

libraries provided in the Arduino IDE are not clear about

how the communication is achieved. Another challenge that

was faced to figuring out how the serial libraries of the

Ardunio IDE function in order to provide easy to read data

to the HCS12. Eventually it was discovered that these

standard function provide ASCII encoding to anything its

sends out through its Serial.print() function. In this case

since the user will not see the data being sent this is not

useful at all, in fact it’s the opposite. Later it was discovered

that a single non-encoded byte could be sent, which is what

lead to the need to split the digital readings into two bytes.

One could also send an array of bytes.

This led to the HCS12 code being modified to wait for four

bytes, recombine the bytes, and then make the correct

decision on which instruction to send to vehicle.

SCI Interrupt Service Routine

Inside the interrupt service routine of SCI1, there is a

necessity of checking which functionality has triggered the

flag as both transmitter and receiver shares the same flag.

When receiver gets a byte, RDRF bit (bit 5) in SCI1SR1

becomes high. Originally, (SCI1SR1 & (1<<5) == 1) code

was used to mask the RDRF bit specifically. However, this

method did not work during the testing. The solution to this

problem is to use the pre-defined macro

“SCI1SR1_RDRF_MASK” that masks the RDRF bit. After

the code is replaced with (SCI1SR1 &

SCI1SR1_RDRF_MASK), interrupt service routine

correctly processes the received byte.

CONCLUSIONS

Throughout the designing stage, constructing stage, and the

testing stage of the toy car controller, the group learned how

to work together effectively. Upon completion of project,

toy car controller using accelerometer was fully functional.

The Bluetooth module successfully installed to achieve the

extended project goal. The project demonstrated the

importance of working simultaneously on different

components by creating the agreement on how two

components interface. This method increased the efficiency

of development. During the development, team repeatedly

realized the importance of documentation. Incremental

development and testing approach eliminated bugs and

problems at early stage, making the integration of sensors

and microcontroller much efficient at later stage.

Overall, this project helped deepened the group’s

understanding of programming a microprocessor,

interfacing with peripherals and sensors, and finally testing

it. It was satisfying to see how individual pieces of

knowledge throughout the semester were combined and

used to complete one project.

VI. REFRENCES

1.Analog Devices . "Small, Low Power, 3-Axis ±3 g

Accelerometer." Sparkfun.com. 2009.

https://www.sparkfun.com/datasheets/Components/SMD/ad

xl335.pdf (accessed April 20, 2016).

2.Mazidi, and Causey. HCS12 Microcontrollers and

Embedded Systems using Assembly and C with

CodeWarrior. Edited by 1st. Prentice Hall,, 2009.

3.PERICOM. "PT8A977B 5-Function Remote Controller."

Pericom.com. July 6, 2012.

https://www.pericom.com/products/home-appliance/remote-

controller/part/PT8A977B (accessed April 20, 2016).

4.Roving Networks . "Bluetooth Data Module Command

Reference & Advanced Information User’s Guide."

Sparkfun.com. March 26, 2013.

https://cdn.sparkfun.com/assets/1/e/e/5/d/5217b297757b7fd

3748b4567.pdf (accessed April 20, 2016).

5.Sadeh, Waseem. ECE-470-11322 / ECE-570-11323 /

CSE-470-11324.201610. Jan 2016.

https://moodle.oakland.edu/course/view.php?id=151039

(accessed April 20, 2016).

6.Sparkfun.com. "Using the BlueSMiRF." Sparkfun.com.

https://learn.sparkfun.com/tutorials/using-the-

bluesmirf?_ga=1.84799071.79649871.1460297461

(accessed April 20, 2016).

7.Texas Instruments . "TI.com." CMOS Dual

Complementary Pair. September 2003.

http://www.ti.com/lit/ds/symlink/cd4007ub.pdf (accessed

April 20, 2016).

Appendix A (HCS12 Sensors Schematics)

Bluetooth Module

VCC

GND

TX-O

RX-I

CTS-I

RTS-O

SCI1 Tx (PS3)

SCI1 Rx (PS2)

GND on HCS12

5V on HCS12

1

2

3

4

5

6

7 8

9

10

11

12

13

14

CD4007

5V on HCS12

Left Control (IC side)

HCS12 (PA4)

Left Control (GND side)

Right Control (IC side)

HCS12 (PA6)

GND on HCS12

Right Control (GND side)

1

2

3

4

5

6

7 8

9

10

11

12

13

14

CD4007

5V on HCS12

Back Control (IC side)

HCS12 (PA2)

Back Control (GND side)

Front Control (IC side)

HCS12 (PA0)

Front Control (GND side)

GND on HCS12

Appendix B (Arduino Sensors Schematics)

ADXL 335

XOUT

YOUT

ZOUT

VCC

GND

A0 (ADT pin)

A2 (ADT pin)

A4 (ATD pin)

3.3V on Arduino

GND on Arduino

ST

0.1µF

0.1µF

0.1µF

Bluetooth Module

VCC

GND

TX-O

RX-I

CTS-I

RTS-O

SCI Tx pin

SCI Rx pin

GND on Arduino

5V on Arduino

Appendix C (Wiring on Toy Controller)

Right Control (IC side)

Right Control (GND side)

Left Control (GND side)

Left Control (IC side)

Back Control (IC side) Back Control (GND side)

Front Control (IC side)

Front Control (GND side)

