
Autonomous Parking Spot Locator and Park System for Empty Parking Lot 

Kazumi Malhan 

Electrical and Computer Engineering Department 

School of Engineering and Computer Science 

Oakland University, Rochester, MI 

E-mail: kmalhan@oakland.edu  

 

 
Abstract— The project presents a system that autonomously 

locates a parking spot in an empty parking lot and parks the 

vehicle. The coding is done using C++ with ROS and OpenCV 

libraries, and tested with Gazebo and Rviz based simulation 

environment. In this paper, a navigation node is implemented to 

support an Ackerman drive vehicle. A camera based parking 

spot detection algorithm was developed and implemented. Also, 

camera image feedback was used to improve the accuracy of the 

parking control. The paper discusses methodology, 

implementation, development process, results, and possible 

improvements. 

I. INTRODUCTION 

The goal of this project is to create a system that can 
autonomously find an empty parking slot in the parking lot, 
and park the car. Since most of the implementation of the 
concept is done for a differential drive robot in the class, an 
Ackermann drive robot (carlike vehicle) is chosen for the 
project. 

The project is developed in divide-and-conquer fashion. 
Each component is developed and tested individually, 
followed by the system integration. 

The author could grasp how to develop the navigation 
system as a similar system was developed in class for a 
differential drive robot. Also, professor had provided the 
fundamental of how to interact with OpenCV library and 
cv_bridge package available in ROS.  However, the algorithm 
for parking spot detection and parking maneuver needed more 
extensive research to understand a useful approach. 

All testing is done in simulation-based environment using 
Gazebo. Navigation and parking spot detection algorithms are 
implemented using C++ with ROS and OpenCV libraries. 

The motivation behind this particular project was to 
demonstrate a deep understanding of ROS concepts and apply 
it to a real world project, to show the effectiveness of Rviz 
visualization tool for shorter development and debugging 
time, and get exposure to image processing and OpenCV 
library. 

This report explains the vehicle configuration, design 
process and implementation of each component, the 
experimental setup, analysis of results, possible 
improvements, and future development plan. 

II. METHODOLOGY 

The project is divided into three major components: 
navigation, parking spot detection, and parking maneuver.  

A. Vehicle Configuration 

Audi R8 (Audibot) is used as the test vehicle throughout 
the project. The vehicle model itself is provided by Prof. 
Radovnikovich in the course repository. The vehicle is 
equipped with the sensors described in Table 1 below. 
 

Sensor Purpose 

GPS (1 Hz) Localization 

LIDAR Costmap Generation 

Front Camera Parking Sport Detection 

Back Camera Parking Maneuver 
feedback 

 
Table 1: List of sensors equipped on audibot 

 
GPS is placed in top of the vehicle to provide the exact 

location of the vehicle. To make the system more realistic, the 
GPS operates at 1Hz. LIDAR is placed on top of the vehicle 
to provide object information for costmap generation. The 
front camera, which is actually placed at front right side of the 
vehicle, is used to detect the parking spot.  Due to 
computational power limitations, the left side camera is not 
installed in this project. However, it can be installed on a real 
system with similar algorithm as used for the front right 
camera. The back camera is mounted at the rear of the 
Audibot, showing lower rear of the vehicle. This camera is 
used during the parking maneuver to provide feedback to 
parking control node. Figure 1 shows the fully equipped 
Audibot.  

 

 
Figure1: Fully equipped Audibot 

 
The Audibot is controlled using speed and steering angle 

commands, instead of the Twist message (speed and yaw 
rate). The controller node publishes appropriate topics, and 
Gazebo subscribes to them in order to move the vehicle in the 



simulation. Gazebo provides the current speed, yaw rate, and 
steering angle as references to be used by the controller nodes.  

B. Navigation 

The navigation system consists of three nodes. The odom 

node implements state space model, the car_nav node 

implements costmaps and planners, and the set_nav_points 

node publishes appropriate goals to be used by planner. The 

Figure 2 below shows the organization of the car_nav node. 

In order to develop the car_nav node, nav_stack_example 

created as an example in the class is used as reference. 

 

 
Figure2: Organization of car_nav node 

 

1) Bicycle State Space Model 

As Audibot is an Ackermann drive vehicle, the state space 

model for a bicycle type vehicle is implemented to estimate 

the vehicle position and heading. Only initial heading is 

provided to the system. The state vector, control vector, and 

state space equation are shown in Equations 1, 2, and 3 

below. 

 

𝑋 = [

𝑥
𝑦
𝜓

]   (1)                  𝑈 =  [
𝑣
𝛼𝑠

]      (2) 

 

           𝑓(𝑋, 𝑈) =  {

�̇� = 𝑣𝑐𝑜𝑠𝜓
�̇� = 𝑣𝑐𝑜𝑠𝜓

�̇� =  
𝑣

𝐿
𝑡𝑎𝑛 (

𝛼𝑠

𝛾
)
              (3) 

 

To implement these equations, discretization is necessary, 

as a digital program cannot implement those equations. The 

discretized version of state space model is show in equation 

4. Here, the state space node is running at 50 Hz, so sample 

time Ts is 0.02 seconds.  

 

𝑥𝑘+1 =  𝑥𝑘 + 𝑇𝑠 ∗ 𝑣𝑘 ∗ 𝑐𝑜𝑠𝑣𝑘  
                𝑦𝑘+1 =  𝑦𝑘 + 𝑇𝑠 ∗ 𝑣𝑘 ∗ 𝑠𝑖𝑛𝑣𝑘           (4) 

𝜓𝑘+1 =  𝜓𝑘 + 𝑇𝑠 ∗
𝑣𝑘

𝐿
𝑡𝑎𝑛 (

𝛼𝑠|𝑘

𝛾
) 

 

To improve the accuracy of location estimate, GPS 

reading is incorporated to the node. As state space node is 

running at 50 Hz while GPS is at 1Hz, x and y values are 

replaced with GPS reading whenever GPS updates. Heading 

estimation is done purely by state space equation.  

The node publishes the information using an odometer 

message. Also, the node publishes the transform from 

base_footprint frame to map frame. 

 

2) Goal Publisher 

Since the vehicle has the front camera on the right side of 

the vehicle, Audibot must drive itself in a way that the 

parking spot comes to the right side of the vehicle. Also, a 

goal point is needed for the global planner to publish the path.  

A node that performs a similar task was developed during 

the GPS simulation project. Therefore, the author had a solid 

reference to implement the idea. Currently, goal location is 

hard coded in the node, but the code will be updated in the 

future to take them as yaml file parameters. 

The goal publisher node subscribes to odometer message, 

and calculates the distance till goal point. If the distance is 

less than the threshold value, then the node updates the goal 

to next point. Once the node reaches the last goal, it resets the 

goal to first point for further searching.  

  

3) Global and Local Costmap 

Costmap_2d package available in ROS is used for global 

and local costmap generation. The class is initialized inside 

the car_nav node. Costmap is generated with laser scan data 

obtained from the LIDAR on top of the vehicle. The main 

difference from costmap for differential drive is that 

Ackerman drive vehicle has a rectangular footprint instead of 

circular, and base_footprint is located at the rear of the 

vehicle instead of near the center. A few parameters are 

modified to accommodate these changes. The Table 2 shows 

the summary of important parameter changes. These 

parameters are set in both the global and local costmap. 

 

Parameter  Value 

Footprint:  [[1.0, 2.0], [1.0, -2.0], [-

1.0, -2.0], [-1.0, 2.0]] 

inflation:  

     inflation_radius:  3.0 

     cost_scaling_factor:  1.0 

Table 2: Summary of important parameters 

 

The footprint is specifically defined in costmap to 

generate a wider lethal cost area. The inflation radius is 

defined bigger as vehicle base_footprint is located at the rear. 

During the test, there were many incidents where Audibot hit 

the wall while base_footprint was outside the inscribed cost 

area. 

 

4) Global Planner 

The global planner used for this project is the same global 

planner used by a differential drive robot. It means that the 

global plan developed assumes that the robot can change 

directions while stationary without moving. This decision is 

acceptable for the project because the global planner is not 

generating the vehicle control command.  



In order to develop the plan, global planner takes current 

location from odometer node, goal location from 

nav_set_point node, and generates the pose stamped 

message. Originally, global planner outputs error message 

stating that there is no goal provided to the terminal. In order 

to prevent this issue, code segment where global plan is 

generated is placed inside the conditional statement so that it 

only runs when there is a valid goal available.  

 

5) Teb Local Planner 

One of the most difficult parts of navigation of Audibot 

was to implement a teb local planner. Teb stands for Timed 

Elastic Band. The implementation of local planner that 

supports carlike robot was critical to this project as changing 

direction while stopped is impossible for Audibot. Originally, 

the author planned to develop own local planner by 

inspecting the architecture of base local planner package for 

differential drive robot. However, after extensive research, a 

teb local planner that experimentally supports carlike robot 

was found.  

Currently, teb local planner is developed as plugin to the 

move_base node. However, the move_base includes a 

recovery feature that does not support carlike movement. 

Also, implementing the move_base node makes it harder to 

customize the behavior of the node. By mimicking the 

implementation of base local planner into the nav_stack node 

and finding similar functionality on teb local planner, the 

author was able to implement into car_nav node. One 

addition made to car_nav node is the conversion from yaw 

rate to steering angle. This is because teb local planner 

outputs the vehicle control command in speed and yawrate. 

Resolving the dependency for the teb local planner was 

another big challenge that author has faced. The planner 

utilizes C++11 and GNU++11, and had dependency to 

SuiteSparse, which is outside of ROS ecosystem. To use new 

version of C++, following code described in Figure 3 is 

added to CMakeLists.txt, and path to SuiteSparse is added in 

include_directories section. 

 

 
Figure 3: Enable C++11 and GNU++11 in CMakeLists.txt 

 

Similar to base local planner, teb local planner takes 

various  settings via yaml file. The important change made 

here is to allow large amount of deviation from the global 

plan. It is because global plan generates curves that are not 

feasible for Audibot to take. 

Additionally, teb local planner takes wheel base or 

minimum turning radius to accurately plan local path that 

Audibot can follow. Enable_homotopy_class_planning 

parameter enables multiple local path planning, however, it 

uses so much computational power that the Gazebo 

simulation cannot run. Thus this parameter is disabled for the 

project. 

As teb local planner is still experimental, the performance 

of the package can be a little slow, and decent time to create 

local path if there is objects around, or global plan is very 

tight for Audibot. However, this package is trying to solve a 

difficult problem that many people want the solution for, and 

the author is looking forward to contributions for making the 

package better. 

 

C. Parking Spot Detection 

Image processing is the area where the author has less 

experience, so extensive research on IEEE, SAE, and other 

technical papers are done to prepare a few methods to try. 

Also, professor provided a few guides on how to place 

camera in Gazebo and work with them. In this project, a front 

camera located at front right is utilized to detect the empty 

parking sport. Ultrasonic sensors will not work with this 

project because there is no other car to measure the distance. 

 

1) Flow of Image Processing 

The raw image captured from front camera is a rich 

image that contains details of various objects, and it is a great 

resource for humans to detect a parking spot. However, as 

more processing is necessary for the system to detect the 

parking spot, the camera image is converted to Mat data type 

to work with the OpenCV library. Figure 4 below shows the 

raw image captured from the front camera. Table 3 shows the 

flow of image processing. 

 

 
Figure 4: Raw Image from Front Camera 

 

1 Convert image from BGR8 to HSV 

2 Split channel, take Hue 

3 Threshold Hue (Center: 30, Width: 10) => 

Yellow 

4 Erode and dilate to remove noise 

5 Apply Canny Edge Detection algorithm 

6 Erode and dilate to remove noise 

7 Apply Template Matching, get highest possible 

location 

8 Inside the location, apply Probabilistic Hough 

Transform 



9 Calculate angles of each line, and delete similar 

ones 

10 Check angle and number of lines detected 

Table 3: Flow of Image Processing 

 

First, the raw image is converted from BGR format to 

HSV format, and split to each channel. Next, the Hue channel 

is thresholded with center at 30 with width of +/= 10 to 

extract the yellow line color. Figure 5 shows the image after 

Hue threshold is applied. Dynamic reconfigure server is 

established for this process to dynamically changes the 

threshold values to select best values to use. The resulting 

image is eroded to remove the small noise generated during 

the previous process, and dilated to bring back the width of 

the line.  

Originally, Probabilistic Hough Transform was applied 

at this stage to detect the lines, but the algorithm detected 

hundreds of lines, as lane marking are still wide. In order to 

the reduce the number of lines, Canny Edge Detection is 

applied to the image to extract the edges of the lane mark. 

Figure 6 shows the image after Canny Edge Transform is 

applied. 

 

 
Figure 5: Image after Hue Threshold  

 

 
Figure 6: Image after Canny Edge Transform 

 

After the canny transform, Probabilistic Hough 

Transform is applied to extract the lines. Although the 

number of lines detected is reduced, it was still difficult to 

select which pair of lines are two sides of parking spot that 

the car is searching for. 

 

2) Template Matching 

The method to apply Template Matching algorithm was 

developed and implemented. This method worked well as 

parking spots is repeat of similar shapes, and one template 

works for all of the parking spots.  

Template Matching is an algorithm that consists of two 

steps. In OpenCV, there are six methods available to perform 

the task, and the CV_TM_SQDIFF method is used as it most 

accurately detected the parking spot. Figure 7 shows the 

template image used for the project, and Figure 8 shows the 

detected parking spot image. 

 

 Step1: Compares a template against overlapped image 

regions.  

 Step2: Finds the global minimum in the array 

 

 
Figure 7: Template Image  

 
Figure 8: Sample Detected Parking Spot 

 

The single problem left after the Template Matching was 

that the algorithm always returns the highest possible position 

where parking spot is detected even if there is no parking 

spot. In order to identify when actually parking spot is 

detected, Probabilistic Hough Transform is applied inside the 

detected rectangle. Also, angle of each line is calculated and 

all similarly angled lines are deleted. The parking spot is 

considered to be detected when there are more than three 

differently angled lines inside. Figure 9 below shows the 

result of Probabilistic Hough Transform. 

 

 
 Figure 9: Result of Probabilistic Hough Transform 

 

3) Feature 2d Method 



Feature 2d is another method in OpenCV to recognize the 

object in the image. The main difference between Template 

Matching and Feature 2d is that Feature 2d finds the key 

points in both template and source, and tries to match similar 

key points. Figure 10 shows the result of implementation. 

 

 
Figure 10: Result of Feature 2d 

 

Feature 2d did not work well with this project for two 

reasons. First reason is that parking spot lines do not have 

obvious unique key points. It is obvious from the images that 

there are not many key points detected. Another reason is that 

a parking lot is consists of similar lines. This causes Feature 

2d algorithms to confuse which key points belongs to which 

line. The image above contains the line that goes from left 

side of line to right side of line. As a result, this algorithm is 

not used in the project. 

D. Parking Maneuver 

Final component of the project after parking spot is 

detected is to park the car inside the parking spot. Since the 

author drives a car, one has decent idea of how the car should 

be controlled. Additionally, research was conducted on how 

current production vehicles that support automatic parking 

with sonar sensors work. 

 

1) Basic Control 

Since vehicle dimensions, vehicle dynamics, camera 

mounted location, and camera’s field of view (FOV) are 

known to the system, time based fixed control can be 

implemented to park the car after a parking spot is detected. 

Referencing Figure 11 below, it shows that there are only 

limited position where Audibot can detect the parking spot. 

If the car goes out of that range of position, parking spot 

recognition system does not locate the parking spot. 

 

 
Figure 11: Trajectory for parking maneuver 

 

Initially, manual vehicle control node with dynamic 

reconfigure server was developed to obtain the general idea 

of how long the vehicle should go forward, go backward with 

turn, etc. After these parameters are identified, a basic control 

node is implemented to perform the procedure automatically. 

However, the vehicle goes out of parking lane with pure time-

based control as it cannot accommodate the position and 

heading differences when parking spot is detected.   

 

2) Redo Process 

In order to prevent vehicle from going out of the lane, 

feedback control needs to be developed. The back camera 

mounted at the rear end of the vehicle is used to provide the 

appropriate feedback to the parking control node to fix the 

position and orientation of the vehicle. Similarly to how the 

image processing is done for front camera, the same process 

up to number 6 in Table 3 is applied to the back camera 

image. 

Since the visible area of the back camera is significantly 

smaller than the front camera, Hough Line Transform is used 

instead of Probabilistic Hough Transform. Another reason of 

using line transform is because it returns rho (distance) and 

theta (angle). These parameters are very valuable to detect if 

the vehicle is oriented well, or is going out of the lane from 

either side. After numbers of detected lines are reduced using 

similar angle deletion method, logic is applied to identify the 

appropriate feedback signal. Figure 12 shows the vehicle 

orientation and how the back camera detects the lane mark. 

 

 
Figure 12: Relationship of Vehicle Orientation and Camera 

Image Lane Detection 

 



 
Figure 13: Lane Classification Algorithm 

 

Figure 13 above shows the code snippet for lane 

classification and feedback signal generation code. In order 

to classify and parking complete, the lane park needs to come 

near the vehicle (rho > 200) with horizontal orientation (1.5 

< theta < 1.6). If line is not horizontal, then sign of the angle 

is checked to classify if car is going out from left side or right 

side of the lane. Once it is detected, feedback is provided to 

control node, and the node performs a redo procedure. 

 

3) Image Transport 

The image transform is a method to project camera pixels 

into map frame with various mathematical operations and 

frame transformations. With this functionality, more accurate 

parking trajectory can be performed. Unfortunately, the node 

was not fully completed within the project timeline, but this 

section describes the development effort and current results. 

In order to perform image transport, the following steps 

need to be done: 

 

1. Each pixel to field of view (FOV) 

2. FOV to Camera frame 

3. Camera frame to Base_footprint frame 

4. Base_footprint frame to map frame 

 

Steps 3 and 4 are done using TF transform as Gazebo 

publishes transform from camera frame to base_footprint 

frame, and odometer node publishes transform from 

base_footprint frame to map frame. Image geometry package 

available in ROS ecosystem is used to transform each pixel 

to FOV then to camera frame. Figure 14 shows the result of 

image transform visualized with Rviz. It is visible that 

parking spot is compressed. The cause of this problem seems 

to be the miscalculation of distance to the ground for each 

pixel as camera is mounted at angle. 

  

 
Figure 14: Result of Image Transform with Rviz 

E. Integration 

Once all components are ready to use, final part of the 

project is the integration of all components. Figure 15 below 

shows the relationship of how each node interacts with other 

nodes. Since the system contains two control nodes that send 

the speed and steering, a master node is added to the system 

to switch between navigation control and parking control. 

The criteria to switch from navigation mode to parking mode 

is the five consecutive receiving of parking spot detection 

signal from front camera node. The figure also shows the 

nodes that are currently under development. 

 

 
Figure 15: System Node Relationship 

III. EXPERIMENTAL SETUP 

The project is developed and tested in Gazebo and Rviz 
based simulation environment. The simulation-based 
development is chosen because of the short development 
timeline, high cost of equipment, and safety of testing. As 
each component is developed, sectional testing was done to 
ensure the functionality. This reduces the debug time during 
the software integration process. Figure 16 shows the Gazebo 
simulation environment developed for the project. The walls 
are randomly placed to test the obstacle avoidance feature of 
navigation. Parking lot model is developed from meshes using 
FreeCAD program. In order to make the simulation more 
realistic, world frame published by Gazebo is disabled, so that 
vehicle does not know the exact location without localization. 
The challenges the author faced with Gazebo simulation is the 
frequent crash of Gazebo, and model color not reflected by 
camera image. These issues should be resolved once the 
system upgrades to ROS Kinetic, which supports Gazebo 7.  



 

 
Figure 16: Gazebo Simulation Environment 

 

 
Figure 17: Rviz Visualization of Navigation Phase 

 
Figure 17 above shows the visualization of navigation 

phase using Rviz. Green path is global path while pink arrows 
are local planner’s path. With Rviz, it is possible to visualize 
how local planner is deviating from global plan to support 
Ackerman drive robot. Also, it is observed that costmap is 
deformed a little as vehicle goes because heading is purely 
based on bicycle state space model, and it accumulates error 
over time. Although the simulation runs at 1/3 of real speed 
when complete system is loaded, it is sufficient to test the 
system safely. 

IV. RESULTS AND CONCLUSION 

The project was able to reach the point where Audibot 
navigates the parking lot by itself by GPS points, identify the 
parking spot, and park the vehicle without touching any side 
of the line within a short development timeline. With current 
simulation environment, it takes 3 minutes in simulation time 
(1 minute in real time) to complete whole process of parking. 

Future improvements are as follows: 

 Full implementation of image transport node 

 Functionality to call the vehicle back to the original 
location 

 Re-factor the code using classes 
 
Through this project, the author was able to demonstrate 

each component (navigation, parking spot detection, and 
parking maneuver) using the concepts learned in class, 
integrate all components, and make them work together. 
Experience was gained working with OpenCV library and was 
exposed to the field of image processing. The author has 
learned the difficulty of incorporating all sensors information 
and producing efficient control signals.  

REFERENCES 

 
[1] Teb_local_planner ROS documentation. [http://wiki.ros.org/ 

teb_local_planner] 

[2] Navigation package ROS documentation [http://wiki.ros.org/ 
navigation] 

[3] Image geometry ROS documentation [http://wiki.ros.org/ 
mage_geometry] 

[4] Hough Transform OpenCV documentation 
[http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/hough_lin
es/hough_lines.html] 

[5] Template Matching OpenCV documentation 
[http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template
_matching/template_matching.html] 

[6] Feature2d OpenCV documentation 
[http://docs.opencv.org/3.1.0/d0/d13/classcv_1_1Feature2D.html#gsc
.tab=0] 

[7] M.Radovnikovich, P. K. Vempaty, K.C.Cheok, “Auto-Preview 
Camera Orientation for Environment Perception on a Mobile Rebot” 

 


