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Abstract—This project presents an architecture to calculate 

floating point power operation based on hyperbolic cordic. The 

coding is performed in parameterized method to support 

numbers of different floating point format. In this paper, the 

system is implemented for IEEE-754 standard Single precision 

and Double precision floating point format. The IP is created 

using AXI4-Full bus interface for board implementation. SD 

card interface also developed to support reading inputs from 

and writing results to SD card. The paper discusses 

methodology, implementation, accuracy of hardware, resource 

usage, and possible improvements.   

I. INTRODUCTION 

The goal of this project is to create power operation 
digital circuit that is based on hyperbolic cordic. Since we 
have used fixed point for most of the implementation in 
class, floating point format is chosen for this project.  

The project was developed inside out, meaning 
developing the core center piece (extended hyperbolic 
cordic) first, then wrapping with top level file of power 
operation, and so on. The hardware was created in 
parameterized fashion to support different floating point 
format. Until FIFO interface, all development was done 
using Vivado. After creating power operation IP with AXI4-
full interface, development shifts to SDK for software side. 
SD card interface was developed to pass large number of 
input combinations to IP, which is topic outside of the class. 

The motivation behind this particular project was to show 
deep understanding of design and implementation of data 
path, to show the effectiveness of parameterized vhdl coding, 
and to demonstrate the powerful combination of software 
and hardware programing. The design decisions were based 
to maximize the usefulness of digital circuit. 

This report explains the design process of each 
component, how the hyperbolic cordic and power algorithms 
are implemented, experimental setup, analysis of results and 
accuracy, resource usage, and possible improvements. 

II. METHODOLOGY 

A. Floating Point Number System 

There are three standard types in IEEE floating point 

arithmetic: single precision, double precision and extended 

precision. Single precision numbers require a 32-bit word 

with 8 exponential bits and 23 fractional bits. 

The +/- refers to the sign of the number, a zero bit being 

used to represent a positive sign. The representation for zero 

requires a special zero bit string for the exponent field as 

well as a zero bit string for the fraction, i.e. 

0 00000000 0000000000000000000000 

 

 
 

All the lines of Table above except the first and the last 

refer to the normalized numbers, i.e. all the floating point 

numbers which are not special in some way. Note especially 

the relationship between the exponent bit string a1a2a3…a8 

and the actual exponent E, i.e. the power of 2 which the bit 

string is intended to represent. We see that the exponent 

representation does not use any of sign-and-modulus, 2's 

complement or 1's complement, but rather something called 

biased representation: the bit string which is stored is simply 

the binary representation of E + 127. In this case, the 

number 127 which is added to the desired exponent E is 

called the exponent bias. For example, the number  

1 = (1.000… 0)2 * 2
0
 is stored as 

0 01111111 00000000000000000000000 

Here the exponent bit string is the binary representation 

for 0 + 127 and the fraction bit string is the binary 

representation for 0 (the fractional part of 1.0).  

The range of exponent field bit strings for normalized 

numbers is 00000001 to 11111110 (the decimal numbers 1 

through 254), representing actual exponents from Emin = 126 

to Emax = 127. The smallest normalized number which can 

be stored is represented as 

0 00000001 00000000000000000000000 

Meaning (1.000…0)
2
 * 2

-126
, i.e. 2

-126
, which is 

approximately 1.2 * 10-
38

, while the largest normalized 

number is represented as 

0 11111110 11111111111111111111111 

Meaning (1.111…1)2 * 2
127

, i.e. (2- 2
-23

) * 2
127

, which is 

approximately 3.4 * 10
38

. 

For many applications, single precision numbers are 

quite adequate. However, double precision is a commonly 

used alternative. In this case each floating point number is 

stored in a 64-bit double word with 11 exponential bits and 

52 fractional bits. 



The ideas are all the same; only the field widths and 

exponent bias are different. Clearly, a number like 1/10 with 

an infinite binary expansion is stored more accurately in 

double precision than in single, since b1,….., b52 can be 

stored instead of just b1,….,b23. 

There is a third IEEE floating point format called 

extended precision. Although the standard does not require a 

particular format for this, the standard implementation used 

on PC's is an 80-bit word, with 1 bit used for the sign, 15 

bits for the exponent and 64 bits for the significand. The 

leading bit of a normalized number is not generally hidden 

as it is in single and double precision, but is explicitly 

stored. Otherwise, the format is much the same as single and 

double precision. 

The comparison between single precision and double 

precision floating point representation is as follows: 

 

 

B. Extended Hyperblic Cordic 

Hyperbolic cordic is the core of power calculation. The 

basic hyperbolic cordic has very limited range of 

convergence, so negative iteration is implemented to 

increase the range.  The equation 1 and 2 shows the 

hyperbolic cordic algorithms for negative and positive 

iterations. To ensure the convergence, iteration i = 3k + 1 (4, 

13, 40 …) must to be repeated. For this paper, negative 

iteration M = 5, and positive iteration N = 16 is chosen to 

have reasonable range for power operation. The 

convergence bound for basic cordic and expended cordic 

with M = 5 is shown in table 1.  

 

M e
x
 ln(x) 

Basic [-1.11820,1.11820] (0,9.35958] 

5 [-12.42644, 12.42644] (0,6.21539EE10] 

Table 1: Convergence bound for the domain 

 

𝑖 ≤ 0: {

𝑥𝑖+1 =  𝑥𝑖 + 𝛿𝑖𝑦𝑖(1 − 2𝑖−2)                        

𝑦𝑖+1 =  𝑦𝑖 + 𝛿𝑖𝑥𝑖(1 − 2𝑖−2)                        

𝑧𝑖+1 =  𝑧𝑖 + 𝛿𝑖𝜃𝑖 , 𝜃 = 𝑇𝑎𝑛ℎ−𝑖(1 − 2𝑖−2)

 (1) 

 

𝑖 > 0: {

𝑥𝑖+1 =  𝑥𝑖 + 𝛿𝑖𝑦𝑖2−𝑖                              

𝑦𝑖+1 =  𝑦𝑖 + 𝛿𝑖𝑥𝑖2
−𝑖                             

𝑧𝑖+1 =  𝑧𝑖 + 𝛿𝑖𝜃𝑖 , 𝜃 = 𝑇𝑎𝑛ℎ−𝑖(2−𝑖)

        (2) 

 

Delta in the equation is calculated using following two 

equation depends on the operation mode (Equation 3). An 

for this extended hyperbolic cordic is calculated using 

equation 4. With M = 5 and N = 16, An = 5.0382*10
-4

. 

After sufficient number of iterations, hyperbolic cordic 

converges to certain values (Equation 5, 6).  

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = −1 𝑖𝑓𝑧𝑖 < 0; +1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             (3) 
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = −1 𝑖𝑓𝑥𝑖𝑦𝑖 ≥ 0; +1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

𝐴𝑛 = (∏ √1 − (1 − 2𝑖−2)20
𝑖=−5 )(∏ √1 − 2−2𝑖16

𝑖=1 )      (4) 

 

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: {

𝑥𝑛 =  𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 +  𝑦0𝑠𝑖𝑛ℎ𝑧0)         

𝑦𝑛 =  𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 +  𝑦0𝑠𝑖𝑛ℎ𝑧0)        
𝑧𝑛 =  0                                                       

 (5) 

 

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: {

𝑥𝑛 =  𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 +  𝑦0𝑠𝑖𝑛ℎ𝑧0)         
𝑦𝑛 =  0                                                        

𝑧𝑛 =  𝑧0 + 𝑇𝑎𝑛ℎ−𝑖(
𝑦0

𝑥0

)                          
 (6) 

 

By using special input combination, we are able to 

obtain exponential operation and natural logarithm. 

Exponential is calculated using rotation mode with x0 = y0 = 

1/An, z0 = α, xn = cosh α + sinh α = e
α
. Natural logarithm is 

calculated using vectoring mode with x0 = β+1, y0 = β-1, z0 

= 0, zn = tanh
-1

(β-1/ β+1) = ln(β)/2. 

 

Figure 1: Architecture of extended hyperbolic cordic 

 
 

The cordic designed for this project is coded in 

parameterized fashion to support any format of floating 

point. It takes total number of bits (N), number of exponent 

Negative 

FSM 

Positive FSM 

Cordic FSM 



bits (EXP), and number of fractional bits (FR) as a 

parameter. It is notable that LUT must contain the pre-

calculated values for tanh that will be used for operation. 

Figure 1 shows the basic architecture of extended 

hyperbolic cordic. Top half of the circuit is for negative 

iteration. The first multiplexers select initial inputs at the 

beginning, and then take previous output from following 

iteration. Components shown in red box (adder/subtractor, 

shifter) are floating point supported components which 

Professor Llamocca has provided. Other components are 

same as if the system is designed for fixed point format. 

LUT is hard coded inside the source file. The system 

supports 64, 32, 24, 16 bit floating point number. 

Appropriate LUT values are selected by using “if (N = XX) 

generate” statement. The negative finite state machine 

(FSM) (figure 2) controls the iteration, shift amount, enable 

signals, add/sub, and multiplexer select time. Negative FSM 

counts iteration from -7 to -2 to avoid i-2 operation for 

different location. After the negative iteration, positive 

iteration circuit begins to work. Again, multiplexer is 

located to select output from negative iteration for the first 

time, then takes previous outputs. Rest of the circuit works 

similar to negative iteration.  

 

Figure 2: ASM chart of negative FSM 
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The extended hyperbolic cordic is controlled by three 

separate FSMs. Positive and negative ASM are show in 

figure 2 and 3. Both positive and negative FSM keeps track 

of iteration, and decides the shift amount, sign of add/sub, 

and enable signals. The challenge we faced is to develop the 

method to repeat i = 4 and 13. This is achieved by adding 

code to a counter inside positive FSM that generates flag 

during iteration 4 and 13, then implement a register to keep 

track of previous iteration. Also, we had hard time realizing 

that positive iteration starts from 1, not 0. The green boxed 

area in positive FSM performs this task. The cordic FSM is 

a simple FSM that first enables negative iterations. When it 

receives done from negative, FSM starts the positive. 

 

Figure 3: ASM chart of positive FSM 
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C. Power Operation 

The power operation can be performed by combining 

exponential and natural logarithm operation. Since 

hyperbolic cordic performs above two operation, running it 

twice will generate the power operation. The following list 

outlines the brief steps to perform cordic based power 

operation. 

Steps to obtain x
y
  

1. Vectoring mode, provide x0 = x+1, y0 = x-1, z0 = 0 

2. You get zn = ln(x)/2 

3. Multiply ln(x)/2 and 2 (by shifting) 

4. Multiply ln(x) and y 

5. Rotation mode, provide x0 = y0 = 1/An, z0 = y.  

6. You get  xn = e
ylnx

 = x
y
 

With implementation of negative iteration, we are able 

to expand the supporting range of (x,y) input to the power 

block as shown in figure 4. 

 

Figure 4: Range of convergence compared between 

basic cordic and M=5 

 



For power operation, 1/An and other few constants need 

to be hard coded inside the top level of power vhdl file. As 

representaiton of number depends on floating point format, 

“if generate” statement is used to choose among possible 

formats.  

Data path and control unit for power operation is 

relatively simple once expanded hyperbolic cordic is done. 

Zn output is connected to shifter which performs the 

multiply by 2. The multiplier is floating point supported. 

 

Figure 5: Data path for power operation 

 
 

FSM for power operation is shown in figure 6. It 

implements the logic outlines as “Steps to obtain x
y”

 in this 

section. 

Figure 6: ASM chart for Power FSM 
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D. FIFO Interface 

To implement the power operation circuit to Zed board 

and control from processor, AXI4-bus interface with FIFO 

was used. Therefore, input and output interface were 

required to pre and post process the data for power 

operation. 

The interface was developed for both 32 bits and 64 bits. 

Since AXI4-full interface transmits 32 bit at a time, 

different circuit was required for two different floating point 

format. When N = 32, green box circuit is generated, and 2 

FSM controls the inputs and outputs. For N = 64, purple box 

circuit was generated. Input creates 64 bit number by 

combining two 32 bits number. The output is divided to two 

32 bits number before entering FIFO. Again, separate two 

FSMs were used to control operation. 

 

Figure 7: FIFO interface for N = 32 and 64 bits 
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E. SD Card Interface 

The Secure Digital Memory Card (shortly SD card) is 

the de facto standard memory card for mobile equipment. 

The SDC has a microcontroller in it. The flash memory 

controls (block size conversion, error correction and wear 

leveling - known as FTL) are completed inside of the 

memory card. The data is transferred between the memory 

card and the host controller as data blocks in unit of 512 

bytes, so that it can be seen as a block device like a generic 

hard disk drive from view point of upper level layers. 

SD card interface uses FATFs file system. Fatfs is a 

generic FAT file system module for small embedded 

systems. The Fatfs module is written in compliance with 

ANSI C (C89) and completely separated from the disk I/O 

layer. Therefore it is independent of the platform. It can be 

incorporated into small microcontrollers with limited 

resource. 

System architecture of different layers of hardware and 

software is SD card IP is created in Xilinx SDK and 

interfaced with different libraries to support SD card data 

transfer. Our project uses the XSDPS libraries at driver 

level. This driver is used to initialize read from and write to 

the SD card.  

 



 

 
 

Data transfer: The SD card is put in transfer state to read 

from or write to it and works in polled mode using ADMA2. 

The default block size is 512 bytes. 

File system: The xilffs library is used to read/write files 

to SD. Application file and functions are developed 

independently and it supports read from a file in SD card 

repeatedly until end of the file and after manipulating the 

data, write back into SD card file in another format. The 

application level software is written by us. This is pictorially 

represented as: 

 

III. EXPERIMENTAL SETUP 

For hardware component, test bench was created at every 
stage of development (hyperbolic cordic, power, FIFO 
interface). Initially, few random values are tested to confirm 
the each step of signals. After the confirmation of basic 
operation, large number of inputs are created using 
MATLAB and fed to the hardware by reading inputs from 
text files. Results are compared with MATLAB values and 
plotted. 

For system level simulation, the 32bit and 64bit SD card 
IPs are created using Vivado and launched into Xilinx SDK 
for SD card application development and testing. To access 
the SD driver libraries there are some BSP settings to be 
modified. To ensure whether this library inclusion happened 
correctly, browse to project explorer and check xilffs 
libraries are included and ff.c and corresponding FATFs files 
are created and linked automatically. 

During the implementation, we have encountered “timing 
violation” error. The Frequency of AXI bus was originally 
100 MHz which is then reduced to 10 MHz (50MHz didn’t 
work). The root cause of the problem is identified as the long 
combinational logic and the negative iteration of CORDIC 

used two floating point adders during one clock cycle and 
hence the propagation delay exceeded the clock frequency. 

The control logic implemented in the application layer 
using C language is depicted using a flow chart below for 
32bit floating point numbers. The same logic shall be used 
for 64bit floating point numbers except for specific 
Hardware interface functions:  
MY_FP_32IP_mWriteMemory() and  
MY_FP_32IP_mReadMemory().  

 

Mount the Sdcard

f_mount();

Open the input file 

SDTest.txt

f_open();

Create and Open the 

output file Spad.txt

f_open();

End of input file

Convert those 32 

characters to 

number and store 

into TempResult

Read one line from inputfile

f_gets();

Move to beginning of 

inputfile

Get only 32 characters into 

readbuffer (binary numbers)

Call NumberReturn() by sending 

TempResult 

DecimalResult = Actual hexa value 

returned by NumberReturn()

Result is 32 bit hexal value

Check until two 32 bits 

are converted and 

stored

Store one this into Array

Call twice 

MY_FP_32IP_mWriteMemory()

This will send two inputs

Read one 32 digit hexa value from 

Memory

Result Array = 

MY_FP_32IP_mReadMemory()

Call Convert2HexaStr();

Convert the resultant hex number to 

string and store into a big buffer 

SourceAddress

No

No

This will  calculate X Power Y

Continue till end of file

Save the contents of Final Buffer 

SourceAddress into output file
Call f_write();

Close input file and output file

Yes

Start SDCARD_Read_Write()

Start 

SDCARD_Read_Write()

STOP 

SDCARD_Read_Write()

Yes

Call the function

SDCARD_Read_Write()

Start Main()

Stop Main()

Main()

 

IV. RESULTS 

A. Hardware Component Simulation 

To check the result of hardware architecture, generated 

results were compared with MATLAB result. For extended 

hyperbolic cordic, relative error of exponential operation 

and natural logarithm operation were plotted. 

 

Figure 7: Relative Error of e
x
 

 



Figure 8: Relative Error of ln(x)/2 

 
The error for both operations was very small. For 

exponential, error was within 2*10
-3

 range, while error for 

natural logarithm was within 2*10
-6

 range. 

For power operation circuit, simulation was performed 

large amount of times to validate the results. As this circuit 

contains multiplier and shifters, small offset at the 

beginning becomes relatively visible offset. The example 

simulation result is shown in figure 9. The relative error for 

this case was about 2%. 

 

Figure 9: Example simulation result: 10
2
 = 99.8 

 

B. System Level Simulation 

The resource usages of generated power IP (32 bits and 

64 bits) are shown below. 

 

N LUT Flip Flops 

32 bit 4378 (8%) 502 

64 bit 9464 (18%) 895 

 

To test the power IP using SD card IP, we have used 

different test files each containing series of numbers. The 

application is written in such a way that all numbers in each 

file are read, processed and results are stored into a separate 

file in the SD card. 

Some of them are explained below: 

Expected function: X power Y (i.e. X 
Y
) 

32 Bit input: (X: 10, 11, 12 till 19 and Y: 2) in single 

precision 

 

 
One example:  

1st value 10 in single precision is 0x41200000 

2nd value 2 in single precision is 0x40000000 

Expected output = 10^2, 11^2, 12^2 etc. in single precision 

 
Expected function: X power Y (i.e. X 

Y
) 

64 Bit input: (X: 10, 11, 12 till 19 and Y: 2) in double 

precision 

 
One example:  

1
st
 & 2nd value 10 in double precision is  

0x 40240000 00000000 

3
rd

 & 4
th

 value 2 in double precision is  

0x 40000000 00000000 

Expected output = 10^2, 11^2, 12^2 etc. in double precision 

 

 

CONCLUSIONS 

We have successfully completed the project and made 
operational power calculation circuit within the time frame. 
The project showed how resource intensive to implement 
arithmetic operation in floating point format. Also, it 
demonstrated importance of inserting register inside large 
combination circuit to improve clock frequency. The 
effectiveness of parameterized vhdl coding made it possible 
to try different floating point format with minimum 
modification.  

The accuracy of power operation can be improved by 
modifying number of positive and negative iterations. Next 
step to this project will be to parameterize both M and N. 

Overall, it was satisfying to work on this challenging 
project and get deep understanding of both software and 
hardware side of embedded system.  
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