
Floating Point CORDIC Based Power Operation

Kazumi Malhan, Padmaja AVL

Electrical and Computer Engineering Department

School of Engineering and Computer Science

Oakland University, Rochester, MI

e-mails: kmalhan@oakland.edu, langaluruvenkat@oakland.edu

Abstract—This project presents an architecture to calculate

floating point power operation based on hyperbolic cordic. The

coding is performed in parameterized method to support

numbers of different floating point format. In this paper, the

system is implemented for IEEE-754 standard Single precision

and Double precision floating point format. The IP is created

using AXI4-Full bus interface for board implementation. SD

card interface also developed to support reading inputs from

and writing results to SD card. The paper discusses

methodology, implementation, accuracy of hardware, resource

usage, and possible improvements.

I. INTRODUCTION

The goal of this project is to create power operation
digital circuit that is based on hyperbolic cordic. Since we
have used fixed point for most of the implementation in
class, floating point format is chosen for this project.

The project was developed inside out, meaning
developing the core center piece (extended hyperbolic
cordic) first, then wrapping with top level file of power
operation, and so on. The hardware was created in
parameterized fashion to support different floating point
format. Until FIFO interface, all development was done
using Vivado. After creating power operation IP with AXI4-
full interface, development shifts to SDK for software side.
SD card interface was developed to pass large number of
input combinations to IP, which is topic outside of the class.

The motivation behind this particular project was to show
deep understanding of design and implementation of data
path, to show the effectiveness of parameterized vhdl coding,
and to demonstrate the powerful combination of software
and hardware programing. The design decisions were based
to maximize the usefulness of digital circuit.

This report explains the design process of each
component, how the hyperbolic cordic and power algorithms
are implemented, experimental setup, analysis of results and
accuracy, resource usage, and possible improvements.

II. METHODOLOGY

A. Floating Point Number System

There are three standard types in IEEE floating point

arithmetic: single precision, double precision and extended

precision. Single precision numbers require a 32-bit word

with 8 exponential bits and 23 fractional bits.

The +/- refers to the sign of the number, a zero bit being

used to represent a positive sign. The representation for zero

requires a special zero bit string for the exponent field as

well as a zero bit string for the fraction, i.e.

0 00000000 0000000000000000000000

All the lines of Table above except the first and the last

refer to the normalized numbers, i.e. all the floating point

numbers which are not special in some way. Note especially

the relationship between the exponent bit string a1a2a3…a8

and the actual exponent E, i.e. the power of 2 which the bit

string is intended to represent. We see that the exponent

representation does not use any of sign-and-modulus, 2's

complement or 1's complement, but rather something called

biased representation: the bit string which is stored is simply

the binary representation of E + 127. In this case, the

number 127 which is added to the desired exponent E is

called the exponent bias. For example, the number

1 = (1.000… 0)2 * 2
0
 is stored as

0 01111111 00000000000000000000000

Here the exponent bit string is the binary representation

for 0 + 127 and the fraction bit string is the binary

representation for 0 (the fractional part of 1.0).

The range of exponent field bit strings for normalized

numbers is 00000001 to 11111110 (the decimal numbers 1

through 254), representing actual exponents from Emin = 126

to Emax = 127. The smallest normalized number which can

be stored is represented as

0 00000001 00000000000000000000000

Meaning (1.000…0)
2
 * 2

-126
, i.e. 2

-126
, which is

approximately 1.2 * 10-
38

, while the largest normalized

number is represented as

0 11111110 11111111111111111111111

Meaning (1.111…1)2 * 2
127

, i.e. (2- 2
-23

) * 2
127

, which is

approximately 3.4 * 10
38

.

For many applications, single precision numbers are

quite adequate. However, double precision is a commonly

used alternative. In this case each floating point number is

stored in a 64-bit double word with 11 exponential bits and

52 fractional bits.

The ideas are all the same; only the field widths and

exponent bias are different. Clearly, a number like 1/10 with

an infinite binary expansion is stored more accurately in

double precision than in single, since b1,….., b52 can be

stored instead of just b1,….,b23.

There is a third IEEE floating point format called

extended precision. Although the standard does not require a

particular format for this, the standard implementation used

on PC's is an 80-bit word, with 1 bit used for the sign, 15

bits for the exponent and 64 bits for the significand. The

leading bit of a normalized number is not generally hidden

as it is in single and double precision, but is explicitly

stored. Otherwise, the format is much the same as single and

double precision.

The comparison between single precision and double

precision floating point representation is as follows:

B. Extended Hyperblic Cordic

Hyperbolic cordic is the core of power calculation. The

basic hyperbolic cordic has very limited range of

convergence, so negative iteration is implemented to

increase the range. The equation 1 and 2 shows the

hyperbolic cordic algorithms for negative and positive

iterations. To ensure the convergence, iteration i = 3k + 1 (4,

13, 40 …) must to be repeated. For this paper, negative

iteration M = 5, and positive iteration N = 16 is chosen to

have reasonable range for power operation. The

convergence bound for basic cordic and expended cordic

with M = 5 is shown in table 1.

M e
x
 ln(x)

Basic [-1.11820,1.11820] (0,9.35958]

5 [-12.42644, 12.42644] (0,6.21539EE10]

Table 1: Convergence bound for the domain

𝑖 ≤ 0: {

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖𝑦𝑖(1 − 2𝑖−2)

𝑦𝑖+1 = 𝑦𝑖 + 𝛿𝑖𝑥𝑖(1 − 2𝑖−2)

𝑧𝑖+1 = 𝑧𝑖 + 𝛿𝑖𝜃𝑖 , 𝜃 = 𝑇𝑎𝑛ℎ−𝑖(1 − 2𝑖−2)

 (1)

𝑖 > 0: {

𝑥𝑖+1 = 𝑥𝑖 + 𝛿𝑖𝑦𝑖2−𝑖

𝑦𝑖+1 = 𝑦𝑖 + 𝛿𝑖𝑥𝑖2
−𝑖

𝑧𝑖+1 = 𝑧𝑖 + 𝛿𝑖𝜃𝑖 , 𝜃 = 𝑇𝑎𝑛ℎ−𝑖(2−𝑖)

 (2)

Delta in the equation is calculated using following two

equation depends on the operation mode (Equation 3). An

for this extended hyperbolic cordic is calculated using

equation 4. With M = 5 and N = 16, An = 5.0382*10
-4

.

After sufficient number of iterations, hyperbolic cordic

converges to certain values (Equation 5, 6).

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: 𝛿𝑖 = −1 𝑖𝑓𝑧𝑖 < 0; +1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)
𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: 𝛿𝑖 = −1 𝑖𝑓𝑥𝑖𝑦𝑖 ≥ 0; +1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐴𝑛 = (∏ √1 − (1 − 2𝑖−2)20
𝑖=−5)(∏ √1 − 2−2𝑖16

𝑖=1) (4)

𝑅𝑜𝑡𝑎𝑡𝑖𝑜𝑛: {

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 + 𝑦0𝑠𝑖𝑛ℎ𝑧0)

𝑦𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 + 𝑦0𝑠𝑖𝑛ℎ𝑧0)
𝑧𝑛 = 0

 (5)

𝑉𝑒𝑐𝑡𝑜𝑟𝑖𝑛𝑔: {

𝑥𝑛 = 𝐴𝑛(𝑥0𝑐𝑜𝑠ℎ𝑧0 + 𝑦0𝑠𝑖𝑛ℎ𝑧0)
𝑦𝑛 = 0

𝑧𝑛 = 𝑧0 + 𝑇𝑎𝑛ℎ−𝑖(
𝑦0

𝑥0

)
 (6)

By using special input combination, we are able to

obtain exponential operation and natural logarithm.

Exponential is calculated using rotation mode with x0 = y0 =

1/An, z0 = α, xn = cosh α + sinh α = e
α
. Natural logarithm is

calculated using vectoring mode with x0 = β+1, y0 = β-1, z0

= 0, zn = tanh
-1

(β-1/ β+1) = ln(β)/2.

Figure 1: Architecture of extended hyperbolic cordic

The cordic designed for this project is coded in

parameterized fashion to support any format of floating

point. It takes total number of bits (N), number of exponent

Negative

FSM

Positive FSM

Cordic FSM

bits (EXP), and number of fractional bits (FR) as a

parameter. It is notable that LUT must contain the pre-

calculated values for tanh that will be used for operation.

Figure 1 shows the basic architecture of extended

hyperbolic cordic. Top half of the circuit is for negative

iteration. The first multiplexers select initial inputs at the

beginning, and then take previous output from following

iteration. Components shown in red box (adder/subtractor,

shifter) are floating point supported components which

Professor Llamocca has provided. Other components are

same as if the system is designed for fixed point format.

LUT is hard coded inside the source file. The system

supports 64, 32, 24, 16 bit floating point number.

Appropriate LUT values are selected by using “if (N = XX)

generate” statement. The negative finite state machine

(FSM) (figure 2) controls the iteration, shift amount, enable

signals, add/sub, and multiplexer select time. Negative FSM

counts iteration from -7 to -2 to avoid i-2 operation for

different location. After the negative iteration, positive

iteration circuit begins to work. Again, multiplexer is

located to select output from negative iteration for the first

time, then takes previous outputs. Rest of the circuit works

similar to negative iteration.

Figure 2: ASM chart of negative FSM

s

E ← 1, Ec ← 1, sclr ← 1, s_xyz ← 1

mode

E ← 1, Ec ← 1 E ← 1, Ec ← 1

Zi

di ← 0 di ← 1

zy

Xi = Zi

di ← 0 di ← 1

zy

done ← 1

s

S1

S2 S3

S4

Resetn = 0

1 (Vector Mode)0 (Rotation Mode)

1

1 1(true)

1
1

1

0

0

0 0

0

The extended hyperbolic cordic is controlled by three

separate FSMs. Positive and negative ASM are show in

figure 2 and 3. Both positive and negative FSM keeps track

of iteration, and decides the shift amount, sign of add/sub,

and enable signals. The challenge we faced is to develop the

method to repeat i = 4 and 13. This is achieved by adding

code to a counter inside positive FSM that generates flag

during iteration 4 and 13, then implement a register to keep

track of previous iteration. Also, we had hard time realizing

that positive iteration starts from 1, not 0. The green boxed

area in positive FSM performs this task. The cordic FSM is

a simple FSM that first enables negative iterations. When it

receives done from negative, FSM starts the positive.

Figure 3: ASM chart of positive FSM

s

E ← 1, Ec ← 1, sclr ← 1, s_xyz ← 1

mode

E ← 1 E ← 1

S1

S2 S3

Resetn = 0

1 (Vector Mode)0 (Rotation Mode)

1

0

Zi

di ← 0 di ← 1

zy

Xi = Zi

di ← 0 di ← 1

zy

done ← 1

s

S4

1 1(true)

11

1

0

0 0

0

rt

Ec ← 0

Ec ← 1ro

Ec ← 1

rt

Ec ← 0

Ec ← 1ro

Ec ← 1

0

0

0

0

1
1

1
1

0

C. Power Operation

The power operation can be performed by combining

exponential and natural logarithm operation. Since

hyperbolic cordic performs above two operation, running it

twice will generate the power operation. The following list

outlines the brief steps to perform cordic based power

operation.

Steps to obtain x
y

1. Vectoring mode, provide x0 = x+1, y0 = x-1, z0 = 0

2. You get zn = ln(x)/2

3. Multiply ln(x)/2 and 2 (by shifting)

4. Multiply ln(x) and y

5. Rotation mode, provide x0 = y0 = 1/An, z0 = y.

6. You get xn = e
ylnx

 = x
y

With implementation of negative iteration, we are able

to expand the supporting range of (x,y) input to the power

block as shown in figure 4.

Figure 4: Range of convergence compared between

basic cordic and M=5

For power operation, 1/An and other few constants need

to be hard coded inside the top level of power vhdl file. As

representaiton of number depends on floating point format,

“if generate” statement is used to choose among possible

formats.

Data path and control unit for power operation is

relatively simple once expanded hyperbolic cordic is done.

Zn output is connected to shifter which performs the

multiply by 2. The multiplier is floating point supported.

Figure 5: Data path for power operation

FSM for power operation is shown in figure 6. It

implements the logic outlines as “Steps to obtain x
y”

 in this

section.

Figure 6: ASM chart for Power FSM

s

Vaddsub ← 1, Ey ← 1

S1

Resetn = 0

1

0

Vaddsub ← 1, s_xyz ← 0

sCordic ← 1, mode ← 1

mode ← 1

s_xyz ← 1

vCordic

S2

S3

S4

s_xyz ← 1

s_xyz ← 1

vCordic

s

sCordic ← 1, mode ← 0

mode ← 1

done ← 1

Eout ← 1

S5

S6

S7

0

1

1

1

0

0

D. FIFO Interface

To implement the power operation circuit to Zed board

and control from processor, AXI4-bus interface with FIFO

was used. Therefore, input and output interface were

required to pre and post process the data for power

operation.

The interface was developed for both 32 bits and 64 bits.

Since AXI4-full interface transmits 32 bit at a time,

different circuit was required for two different floating point

format. When N = 32, green box circuit is generated, and 2

FSM controls the inputs and outputs. For N = 64, purple box

circuit was generated. Input creates 64 bit number by

combining two 32 bits number. The output is divided to two

32 bits number before entering FIFO. Again, separate two

FSMs were used to control operation.

Figure 7: FIFO interface for N = 32 and 64 bits

DI

iempty

irden

DO

ofull

owren

X

Y

power

s done

Input FIFO

Power Operation

Output FIFO

E. SD Card Interface

The Secure Digital Memory Card (shortly SD card) is

the de facto standard memory card for mobile equipment.

The SDC has a microcontroller in it. The flash memory

controls (block size conversion, error correction and wear

leveling - known as FTL) are completed inside of the

memory card. The data is transferred between the memory

card and the host controller as data blocks in unit of 512

bytes, so that it can be seen as a block device like a generic

hard disk drive from view point of upper level layers.

SD card interface uses FATFs file system. Fatfs is a

generic FAT file system module for small embedded

systems. The Fatfs module is written in compliance with

ANSI C (C89) and completely separated from the disk I/O

layer. Therefore it is independent of the platform. It can be

incorporated into small microcontrollers with limited

resource.

System architecture of different layers of hardware and

software is SD card IP is created in Xilinx SDK and

interfaced with different libraries to support SD card data

transfer. Our project uses the XSDPS libraries at driver

level. This driver is used to initialize read from and write to

the SD card.

Data transfer: The SD card is put in transfer state to read

from or write to it and works in polled mode using ADMA2.

The default block size is 512 bytes.

File system: The xilffs library is used to read/write files

to SD. Application file and functions are developed

independently and it supports read from a file in SD card

repeatedly until end of the file and after manipulating the

data, write back into SD card file in another format. The

application level software is written by us. This is pictorially

represented as:

III. EXPERIMENTAL SETUP

For hardware component, test bench was created at every
stage of development (hyperbolic cordic, power, FIFO
interface). Initially, few random values are tested to confirm
the each step of signals. After the confirmation of basic
operation, large number of inputs are created using
MATLAB and fed to the hardware by reading inputs from
text files. Results are compared with MATLAB values and
plotted.

For system level simulation, the 32bit and 64bit SD card
IPs are created using Vivado and launched into Xilinx SDK
for SD card application development and testing. To access
the SD driver libraries there are some BSP settings to be
modified. To ensure whether this library inclusion happened
correctly, browse to project explorer and check xilffs
libraries are included and ff.c and corresponding FATFs files
are created and linked automatically.

During the implementation, we have encountered “timing
violation” error. The Frequency of AXI bus was originally
100 MHz which is then reduced to 10 MHz (50MHz didn’t
work). The root cause of the problem is identified as the long
combinational logic and the negative iteration of CORDIC

used two floating point adders during one clock cycle and
hence the propagation delay exceeded the clock frequency.

The control logic implemented in the application layer
using C language is depicted using a flow chart below for
32bit floating point numbers. The same logic shall be used
for 64bit floating point numbers except for specific
Hardware interface functions:
MY_FP_32IP_mWriteMemory() and
MY_FP_32IP_mReadMemory().

Mount the Sdcard

f_mount();

Open the input file

SDTest.txt

f_open();

Create and Open the

output file Spad.txt

f_open();

End of input file

Convert those 32

characters to

number and store

into TempResult

Read one line from inputfile

f_gets();

Move to beginning of

inputfile

Get only 32 characters into

readbuffer (binary numbers)

Call NumberReturn() by sending

TempResult

DecimalResult = Actual hexa value

returned by NumberReturn()

Result is 32 bit hexal value

Check until two 32 bits

are converted and

stored

Store one this into Array

Call twice

MY_FP_32IP_mWriteMemory()

This will send two inputs

Read one 32 digit hexa value from

Memory

Result Array =

MY_FP_32IP_mReadMemory()

Call Convert2HexaStr();

Convert the resultant hex number to

string and store into a big buffer

SourceAddress

No

No

This will calculate X Power Y

Continue till end of file

Save the contents of Final Buffer

SourceAddress into output file
Call f_write();

Close input file and output file

Yes

Start SDCARD_Read_Write()

Start

SDCARD_Read_Write()

STOP

SDCARD_Read_Write()

Yes

Call the function

SDCARD_Read_Write()

Start Main()

Stop Main()

Main()

IV. RESULTS

A. Hardware Component Simulation

To check the result of hardware architecture, generated

results were compared with MATLAB result. For extended

hyperbolic cordic, relative error of exponential operation

and natural logarithm operation were plotted.

Figure 7: Relative Error of e
x

Figure 8: Relative Error of ln(x)/2

The error for both operations was very small. For

exponential, error was within 2*10
-3

 range, while error for

natural logarithm was within 2*10
-6

 range.

For power operation circuit, simulation was performed

large amount of times to validate the results. As this circuit

contains multiplier and shifters, small offset at the

beginning becomes relatively visible offset. The example

simulation result is shown in figure 9. The relative error for

this case was about 2%.

Figure 9: Example simulation result: 10
2
 = 99.8

B. System Level Simulation

The resource usages of generated power IP (32 bits and

64 bits) are shown below.

N LUT Flip Flops

32 bit 4378 (8%) 502

64 bit 9464 (18%) 895

To test the power IP using SD card IP, we have used

different test files each containing series of numbers. The

application is written in such a way that all numbers in each

file are read, processed and results are stored into a separate

file in the SD card.

Some of them are explained below:

Expected function: X power Y (i.e. X
Y
)

32 Bit input: (X: 10, 11, 12 till 19 and Y: 2) in single

precision

One example:

1st value 10 in single precision is 0x41200000

2nd value 2 in single precision is 0x40000000

Expected output = 10^2, 11^2, 12^2 etc. in single precision

Expected function: X power Y (i.e. X

Y
)

64 Bit input: (X: 10, 11, 12 till 19 and Y: 2) in double

precision

One example:

1
st
 & 2nd value 10 in double precision is

0x 40240000 00000000

3
rd

 & 4
th

 value 2 in double precision is

0x 40000000 00000000

Expected output = 10^2, 11^2, 12^2 etc. in double precision

CONCLUSIONS

We have successfully completed the project and made
operational power calculation circuit within the time frame.
The project showed how resource intensive to implement
arithmetic operation in floating point format. Also, it
demonstrated importance of inserting register inside large
combination circuit to improve clock frequency. The
effectiveness of parameterized vhdl coding made it possible
to try different floating point format with minimum
modification.

The accuracy of power operation can be improved by
modifying number of positive and negative iterations. Next
step to this project will be to parameterize both M and N.

Overall, it was satisfying to work on this challenging
project and get deep understanding of both software and
hardware side of embedded system.

REFERENCES

[1] Mack, J., Bellestri, S., and Llamocca, D., "Floating Point CORDIC-
based Architecture for Powering Computation", to appear in
Proceedings of the 10th International Conference on
ReConFigurable Computing and FPGAs (ReConFig'2015), Mayan
Riviera, Mexico, December 2015.

[2] X. Hu, R.G. Harber, S.C. Bass, “Expanding the range of convergence
of the CORDIC algorithm,” IEEE Transactions on Computers, vol.
40, no. 1, pp. 13-21, Jan. 1991.

