
 1

Project Gummi
16-bit Microprocessor

Kazumi Malhan, Chris Petros, Justen Beffa, Marc, Nahed
Electrical and Computer Engineering Department

School of Engineering and Computer Science
Oakland University, Rochester, MI

E-mails: kmalhan@oakland.edu, ctpetro2@oakland.edu, jbbeffa@oakland.edu, mmnahed@oakland.edu

The purpose of this project is to show the process,
methodology, and design choices to create a 16-bit
microprocessor that performs basic arithmetic, logic, and bit
wise functions. The unique contribution that this project
offers is the user can monopolize the benefits of serial
communication and use an intuitive user interface to
manipulate data without having to interact directly with the
microprocessor.

I. INTRODUCTION
The goal of this design project was to create a functioning

16-bit microprocessor which can store data into one of four
user selected registers and give the user the ability to
manipulate that data within the confines of 1 of 27 user
selected functions.

A Universal Asynchronous Receiver/Transmitter
(UART) handles the communication between the NEXYS 4
and the Visual Basic user interface. The user interface sends
an Instruction Code to the microprocessor through 3 cycles
of receiving data. The user interface reads data in the form
of ASCII, which requires the UART to send 17 cycles of
data from the transmitter back to the user interface. The
result is then interpreted by the Visual Basic interface and
displays the requested data in binary on the interface.

The motivation behind this particular project was to show
a deep understanding how to design and implement a state
machine and data path, which can effectively manipulate
data in a meaningful way. The desire to create a
microprocessor, which performs select arithmetic and logic,
was born of a desire to create a user-friendly device that
does not require the user interact with the NEXYS 4. The
design choices made were done so that the user could easily
manipulate a point and click interface, which can efficiently
manipulate the data and produce desired results.

Figure 1: Top Level View of the Microprocessor

II. METHODOLOGY

A. Universal Asynchronous Receiver/Transmitter (UART)
To accomplish the goal of not interacting with the

NEXYS 4 board during the operation, the UART plays a
critical role. In this project, communication speed is set to be
9600 bps with 8 data bits per cycle. Therefore, the length of
one bit becomes 1/9600 = 10.416 microseconds. The
challenges we had were conversion of data between binary
and ASCII, changing bit length, and repeating the process
several times.

i. UART Receiver

 The UART receiver has a modulo-651counter, which
generates a pulse 16 times per each bit length. By dividing
each bit 16 times, it can minimize the reading error. Once the
receiver starts to get “0” from the UART, it checks 7th
segment sample to confirm whether it is start bit or not. After
receiving start bit, then the receiver takes the 15th segment
sample of bit data and reads its value. A modulo-8 counter
keeps track of how many data bits the system receives.
Finally, it waits for a stop bit to finish the cycle of
communication.

The instruction set for this microprocessor consists of a
5-bit operation instruction, a 4-bit register selection, and a 7-
bit binary input. Since the UART can send only 8 bits per
cycle, it is required to repeat the communication three times.
In this project, the 1st cycle sends the operation instruction,
the 2nd cycle sends the register selection, and the final cycle
sends input binary numbers.

To send an instruction from computer, we convert each
instruction to appropriate ASCII character, and then send
that value to the NEXYS 4 board. For example, when the
operation instruction is “01110” (copy), then the ASCII
character containing “01110” in its least five bits is selected,
transmits to board. In this case, N = “01001110” is sent to
board. The board strips the least 5 bits and keeps the
operation instruction in a register. For register selection, the
system finds an ASCII character containing 4-bit selection
code in least 4 bits. The board, it stripes least 4 bits and
stores to register selection register. For 7-bit binary input, at
the interface side, it converts binary number to decimal
number and then sends the ASCII character that has the same
decimal representation. For instance, if we sends “1001101”

 2

= 77, the system sends Chr(77) = “M”. At the board, it strips
the least 7 bits and stores to input register. When all
communication is completed, the system generates a finish
signal to microprocessor control unit, and sends each
instruction. These conversions are necessary because the
NEXYS 4 board treats everything in binary (“1” or ‘0”).

One challenge we faced was incorporating the receiver
block from the “FPGA Prototyping by VHDL Examples”
book [1]. The code is treated as a black box and only
concerning the inputs and outputs to the block. By placing
another Finite State Machine (FSM) shown in figure 2, we
were able to repeat the communication and receive specific
bit combination.

Figure 2: Data path for UART Receiver

ii. UART Transmitter
 When the UART transmitter receives an enable signal

from microprocessor control unit, it begins to send the result
back to the computer. The result from microprocessor is 16-
bit binary number which is stored in 16-bit parallel access
shit register, however, we cannot send just these 16 bits back
to computer as the computer treats the data in ASCII
character format. Therefore, it is required for transmitter to
convert the 16-bit binary number to 16 ASCII representation
of “1” and “0”.

The point here is that ASCII character representation of
“0” is “00110000” and “1” is “00110001”. As first seven bits
will be same for both numbers, the system contains a 7-bit
parallel access shit register. For each bit, we concatenate
common the 7-bit portion and the one bit from output shift
register. That signal is then sent back to the computer. The
output shift register is loaded only at the beginning of
communication, and the common 7-bit shift register loads
before sending each data bit. The system repeats it 16 times
to send 16-bit binary number.

At the end of 16th cycle, the transmitter sends ASCII
character for “carriage return” to the shift the cursor to the
next line on serial interface result textbox. The data path of
this system is shown in figure 3. To keep track of length of
each bit, number of data bit sent, number of cycle
transmitted, length between each transit, the system contains
five different counters.

Figure 3: Data path for UART Transmitter

The challenge we faced on transmitting the data was the

transmitting order of ASCII character. At the beginning, the
serial interface was receiving different ASCII characters
because the system sent the common 7-bit, then 1-bit from
output shift register. We performed a functional simulation
by reducing the most of the counters to 2. It is found that
ASCII character should be send from least significant bit,
and by sending 1 bit output first, then common 7-bit, we
successfully solved the issue.

B. Serial Communication Interface on Computer
When it comes to UART communication, most projects

use “Putty” as serial communication interface on computer
side. However, it is difficult to use for first time users. To
accomplish the goal the user does not need to read a manual
to operate the processor, we have created our own serial
communication interface for this project using visual basic
shown in figure 4.

Figure 4: Serial Communication Interface

When the interface loads, it scans all COM ports on the

computer, and displays the only available ports. After
selecting the COM port and speed, the user can establish the
connection. Establishing the connection enables the write
button. The interface has an operation section, register
selection section, and an input binary number section. Users

 3

can simple select an operation, register, input bits. When the
user hovers over the operation instruction, the help box
appears and tells the user, which registers the result will be
placed on.

There are different restrictions that are implemented to
prevent the interface from crashing. The first restriction is
that users can only select one button from each category.
When the user selects another button in same category, the
previous selection operation will be deactivated. The second
restriction is that user cannot type anything in result textbox.
The third restriction is that user can only type “1” or “0”, up
to 7 bits to input textbox. Input is converted to 7 bits by
appending “0” even if user types less than 7 bits.

When the serial communication interface receives data
from NEXYS 4 board, it goes through simple test before it
appears on result textbox. Since only ASCII character
coming from board is ether “1” or “0” or “Carriage Return”,
the system compares each ASCII character with these three
possible character. If it does not match, system output
“ERROR” instead of result.

C. Microprocessor Control Unit
The control unit performs several key functions for

the operation of the microprocessor. The control unit
manages the flow of data from bus to register, sends the
operation code to the ALU, keeps the correct timing of
every operation and finally tells the TX unit when to
transmit data to the user interface.

Figure 5 shows the design of the control unit. The
major components of the control units include a Finite
State Machine (FSM), a two to four decoder and a 9-bit
register.

Figure 5: Control Circuit Schematic

Initially the control unit waits for the finish signal

of the RX unit and loads the instruction to the IR register
of the control unit. This occurs during state S1.
 State S2 is where the control unit, based on the
instruction code, prepares to perform the desired
operation. To achieve this the appropriate value for the
multiplexer selector is sent out and the desired memory
location is enabled. For some instructions like load to Rx
and copy from Ry to Rx, this is enough and then the
control unit transitions to state S27. At state S27, the
control unit outputs a high “done” signal and waits for
its enable signal (w in the coding) to return to ‘0’. When

this occurs, the control unit’s “done” signal tells the TX
unit to begin transmission of data back to the user
interface. An interesting fact is that this occurs at the end
of every operation, so unless the load out operation is
selected, the value displayed on the user interface is not
a final value that the user may want.
 For the vast majority of operations, the transition
from S2 to S27 requires two additional states to process
a single operation. For example, to implement a typical
operation, the FSM concatenates ‘1’ & Rx and sends the
correct select signal to allow the value of Rx to be
loaded onto register A of the ALU. From this point the
Finite State Machine transitions to a state SQa. In state
SQa a concatenation of ‘1’ & Ry selects which value to
load onto the main 16-bit bus and therefore is used as the
B value within the ALU. (This is the method used to
select Rx in the previous state.) Additionally, the control
unit sends a specific operation code to the ALU and
enables the G register. For all but the division operations
SQa only requires one clock cycle. The result of the
operation is typically loaded onto register G. From SQa
the FSM transitions to SQb. Universally SQb selects for
the value stored on register G to be loaded onto Rx.
After one clock cycle the FSM transitions from SQb to
state S27.
 As mentioned before in S27, the control unit sends
out a “done” signal, which acts as the initialization
signal for transmission to the user interface to begin, and
then transitions back to S1 waiting for a new operation
to be given and processed.

D. Operations
The operations for the 16-bit microprocessor composed

of a total of 27 operations, which consisted of 21 operations
in the ALU, plus an additional 6 operations outside the ALU.
The operations within the ALU were split into two
categories: arithmetic and logic. The arithmetic portion
consisted of increment (A+1), decrement (A-1), addition,
subtraction, absolute subtraction, multiplication, left shift,
and right shift. The logic portion consisted of 1’s
compliment, AND, OR, NAND, NOR, XOR, XNOR,
greater than (outputs greater input), less than (outputs
smaller input), equals to, binary to gray, gray to binary, and a
reset function. The multiplier was the only operation out of
the 27 operations that took in the least significant 8-bits out
of the 16-bit input. The reason why the inputs were trimmed
was to insure that the output from the ALU did not exceed
16-bits. All the operations in the ALU took a total of one
clock-cycle to compute.

In addition to the 21 operations in the ALU, 4 of the 6
operations, consisting of load in, load in to a register, load
out, copy, are computed by the 4 registers (R0, R1, R2, R3).
The rest of the 6 operations, consisting of division and
modulus, are computed in a separate component. The
purpose of having the division and modulus functions
outside the ALU is because these two functions require a

 4

total of 16 clock cycles to compute. Therefore, if the user
wants to carry out an operation from the ALU, there would
be no reason to wait 16 clock cycles to compute the output
when it could be computed in 1 clock cycle. The input for
the two functions, as well as all of the functions from the
ALU, comes from a register (A) and from the Bus (B).

III. EXPERIMENTAL SETUP
During development, the project was divided into the

following four components: UART receiver, UART
transmitter, ALU, and control unit.

In order to verify the functionality of each operation of
the ALU, a functional simulation was used to confirm each
signal value. Then a timing simulation was used to check
the timing. After these simulations, the ALU was combined
with the control unit for further testing. Again, both
functional simulation and timing simulation was performed
to verify the basic functionality.

The control unit and the ALU were then implemented to
the NEXYS 4 board. It took a 5-bit operational instruction, a
4-bit register selection, and a 7-bit input controlled by 16
switches, and outputting the result to 16 LEDs on the board.
The testing was successful and was able to confirm that all
functions were working properly within the scope of control
unit.

Checking the functionality of the UART receiver was
challenging, as input data came from outside the board.
Since NEXYS 4 board uses a UART to program the board, it
was not possible to loop back the output back to board for
simulation. In order to check, the receiver goes through all of
the states in the FSM, decreased the counter to 2, and
performed the functional simulation. At this stage, we were
able to discover that the receiver block from “FPGA
Prototyping by VHDL Examples” book [1] resets the block
when reset is “1”. The problem was solved by flipping the
reset signal going to the block. Then the code was
implemented to the board, taking the input from the UART,
and outputting the received instruction set to the LEDs. After
a few modifications, we confirmed that the instruction sent
from the computer was correctly displayed on the LEDs.

A similar process was used for the testing of the UART
transmitter. An initial functional simulation was performed
to check that the states in the FSM were moving at the
expected timing. The transmitting order of a bit was also
checked during this process by comparing the order with a
working single ASCII character transmitter. Then the code
was implemented to the NEXYS 4 board, taking inputs from
the 16 switches, enable signal from a button, and outputting
to the UART. A few modifications were done to a counter
that counts the timing in between the transmitting cycle to
minimize an extra waiting time.

After confirming the functionality of each component,
everything was put together for the final testing. At this
point, since we are using the input from the UART, we
cannot do a functional or timing simulation. The code was
implemented to the NEXSYS 4 board, taking inputs from the
UART, and then outputting to the UART. The instruction
code was displayed on the LED to confirm that the board
received the correct instruction. By using a custom serial

communication interface, every possible operational
instruction and register combination was tested. After
confirming all of the results, we concluded that our
microprocessor system was functioning correctly.

IV. RESULTS
Testing of the Microprocessor was done in several

different stages. After the ALU was completed, a behavioral
simulation was devised to test the 21 different operations that
were contained inside the component. Once it proved to be
successful, a top file, consisting of every component except
the UART receiver and transmitter was created and tested.
To insure that all bugs were accounted for, a behavior
simulation, seen in Figure 6 (reference appendix), and a
hardware implementation were used to test every operation.
As seen in the behavioral simulation in Figure 6, 4 unique
binary numbers were inputted into separate registers and
multiple operations, which include left-shift, right-shift,
addition, absolute subtraction, and multiplication
respectively, were checked for correctness. Once both
variations of testing were complete and successful, a final
top file was created, consisting of the previous top file and
the UART components. A third and final test was
completed, testing all the operations using the Visual Basics
graphical user interface to input the instructions as well as
the inputs. With the help of the interface, the implementation
as well as the testing proved to be much more efficient and
user friendly than using the NEXYS 4 board. Overall, the
Microprocessor proved to be successful and all bugs found
were accounted for.

CONCLUSIONS
Throughout the designing stage, constructing stage, and

the testing stage of the 16-bit Microprocessor, the group
learned how to work together effectively. Upon completion
of the project, a 16-bit microprocessor was successfully
operational. Data was able to be loaded onto 1 of 4 registers
and 1 of 27 operations could be used to manipulate the data.
Users were able to enter data via the Visual Basics interface.
Operations were clearly defined, along with clues dealing
with which registers would be used during the selected
operation. Once the user entered a 7-bit binary number, the
data was transmitted using the UART, which handled the
communication between the NEXYS 4 and the Visual Basic
user interface. Once the microprocessor completed the
operation, data was transmitted back to the Visual Basics
interface and the result was displayed, thus the user never
touched the NEXSYS 4 board.

Overall, this project helped deepened the group’s
understanding of designing a microprocessor, constructing it,
and finally testing it. It was satisfying to see how individual
pieces of knowledge throughout the semester were combined
and used to complete one project.

REFERENCES
[1] P. P. Chu, “UART” in FPGA Prototyping by VHDL Examples,

Hoboken, New Jersey: Wiley-Interscience, 2008, pp. 562–1

 5

APPENDIX

Figure 6: ALU and Control Unit Testbench

Input and instructions for testbench in Figure 6 are as follows:

Input <= "0000100"; IR <= "000000000"; -- Load in 4
IR <= "011000000"; -- Save in register R0
Input <= "0000110"; IR <= "000000000"; -- Load in 6
IR <= "011000001"; -- Save in register R1
Input <= "0000010"; IR <= "000000000"; -- Load in 2
IR <= "011000010"; -- Save in register R2
Input <= "0000011"; IR <= "000000000"; -- Load in 3
IR <= "011000011"; -- Save in register R3
IR <= "010100000"; -- Left-shift register R0, new value: 8
IR <= "010110001"; -- Right-shift register R1, new value: 3
IR <= "001101011"; -- Add register R2 with R3, new value in register R3: 5
IR <= "010001101"; -- Absolute subtract register R1 from R3, new value in register R1: 2
IR <= "010011110"; -- Multiply register R2 and R3, new value in register R2: 10
IR <= "011010000"; -- Load Output R0
IR <= "011010100"; -- Load Output R1
IR <= "011011000"; -- Load Output R2
IR <= "011011100"; -- Load Output R3

