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The purpose of this project is to show the process, 
methodology, and design choices to create a 16-bit 
microprocessor that performs basic arithmetic, logic, and bit 
wise functions. The unique contribution that this project 
offers is the user can monopolize the benefits of serial 
communication and use an intuitive user interface to 
manipulate data without having to interact directly with the 
microprocessor.    

I. INTRODUCTION 
The goal of this design project was to create a functioning 

16-bit microprocessor which can store data into one of four 
user selected registers and give the user the ability to 
manipulate that data within the confines of 1 of 27 user 
selected functions.   

A Universal Asynchronous Receiver/Transmitter 
(UART) handles the communication between the NEXYS 4 
and the Visual Basic user interface. The user interface sends 
an Instruction Code to the microprocessor through 3 cycles 
of receiving data. The user interface reads data in the form 
of ASCII, which requires the UART to send 17 cycles of 
data from the transmitter back to the user interface. The 
result is then interpreted by the Visual Basic interface and 
displays the requested data in binary on the interface.  

The motivation behind this particular project was to show 
a deep understanding how to design and implement a state 
machine and data path, which can effectively manipulate 
data in a meaningful way. The desire to create a 
microprocessor, which performs select arithmetic and logic, 
was born of a desire to create a user-friendly device that 
does not require the user interact with the NEXYS 4. The 
design choices made were done so that the user could easily 
manipulate a point and click interface, which can efficiently 
manipulate the data and produce desired results.   

 
Figure 1: Top Level View of the Microprocessor 

 

II. METHODOLOGY 

A. Universal Asynchronous Receiver/Transmitter (UART)  
To accomplish the goal of not interacting with the 

NEXYS 4 board during the operation, the UART plays a 
critical role. In this project, communication speed is set to be 
9600 bps with 8 data bits per cycle. Therefore, the length of 
one bit becomes 1/9600 = 10.416 microseconds. The 
challenges we had were conversion of data between binary 
and ASCII, changing bit length, and repeating the process 
several times.  

 
i. UART Receiver 

 The UART receiver has a modulo-651counter, which 
generates a pulse 16 times per each bit length. By dividing 
each bit 16 times, it can minimize the reading error. Once the 
receiver starts to get “0” from the UART, it checks 7th 
segment sample to confirm whether it is start bit or not. After 
receiving start bit, then the receiver takes the 15th segment 
sample of bit data and reads its value. A modulo-8 counter 
keeps track of how many data bits the system receives. 
Finally, it waits for a stop bit to finish the cycle of 
communication. 

The instruction set for this microprocessor consists of a 
5-bit operation instruction, a 4-bit register selection, and a 7-
bit binary input. Since the UART can send only 8 bits per 
cycle, it is required to repeat the communication three times. 
In this project, the 1st cycle sends the operation instruction, 
the 2nd cycle sends the register selection, and the final cycle 
sends input binary numbers. 

To send an instruction from computer, we convert each 
instruction to appropriate ASCII character, and then send 
that value to the NEXYS 4 board. For example, when the 
operation instruction is “01110” (copy), then the ASCII 
character containing “01110” in its least five bits is selected, 
transmits to board. In this case, N = “01001110” is sent to 
board. The board strips the least 5 bits and keeps the 
operation instruction in a register. For register selection, the 
system finds an ASCII character containing 4-bit selection 
code in least 4 bits. The board, it stripes least 4 bits and 
stores to register selection register. For 7-bit binary input, at 
the interface side, it converts binary number to decimal 
number and then sends the ASCII character that has the same 
decimal representation. For instance, if we sends “1001101” 
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= 77, the system sends Chr(77) = “M”. At the board, it strips 
the least 7 bits and stores to input register. When all 
communication is completed, the system generates a finish 
signal to microprocessor control unit, and sends each 
instruction. These conversions are necessary because the 
NEXYS 4 board treats everything in binary (“1” or ‘0”). 

One challenge we faced was incorporating the receiver 
block from the “FPGA Prototyping by VHDL Examples” 
book [1]. The code is treated as a black box and only 
concerning the inputs and outputs to the block. By placing 
another Finite State Machine (FSM) shown in figure 2, we 
were able to repeat the communication and receive specific 
bit combination.  

 
Figure 2: Data path for UART Receiver 

 
 

ii. UART Transmitter 
 When the UART transmitter receives an enable signal 

from microprocessor control unit, it begins to send the result 
back to the computer. The result from microprocessor is 16-
bit binary number which is stored in 16-bit parallel access 
shit register, however, we cannot send just these 16 bits back 
to computer as the computer treats the data in ASCII 
character format. Therefore, it is required for transmitter to 
convert the 16-bit binary number to 16 ASCII representation 
of “1” and “0”. 

The point here is that ASCII character representation of 
“0” is “00110000” and “1” is “00110001”. As first seven bits 
will be same for both numbers, the system contains a 7-bit 
parallel access shit register. For each bit, we concatenate 
common the 7-bit portion and the one bit from output shift 
register. That signal is then sent back to the computer. The 
output shift register is loaded only at the beginning of 
communication, and the common 7-bit shift register loads 
before sending each data bit. The system repeats it 16 times 
to send 16-bit binary number.  

At the end of 16th cycle, the transmitter sends ASCII 
character for “carriage return” to the shift the cursor to the 
next line on serial interface result textbox. The data path of 
this system is shown in figure 3. To keep track of length of 
each bit, number of data bit sent, number of cycle 
transmitted, length between each transit, the system contains 
five different counters. 
 
 

Figure 3: Data path for UART Transmitter 

 
The challenge we faced on transmitting the data was the 

transmitting order of ASCII character. At the beginning, the 
serial interface was receiving different ASCII characters 
because the system sent the common 7-bit, then 1-bit from 
output shift register. We performed a functional simulation 
by reducing the most of the counters to 2. It is found that 
ASCII character should be send from least significant bit, 
and by sending 1 bit output first, then common 7-bit, we 
successfully solved the issue. 

B. Serial Communication Interface on Computer 
When it comes to UART communication, most projects 

use “Putty” as serial communication interface on computer 
side. However, it is difficult to use for first time users. To 
accomplish the goal the user does not need to read a manual 
to operate the processor, we have created our own serial 
communication interface for this project using visual basic 
shown in figure 4. 

 
Figure 4: Serial Communication Interface 

 
 
When the interface loads, it scans all COM ports on the 

computer, and displays the only available ports. After 
selecting the COM port and speed, the user can establish the 
connection. Establishing the connection enables the write 
button. The interface has an operation section, register 
selection section, and an input binary number section. Users 



 3 

can simple select an operation, register, input bits. When the 
user hovers over the operation instruction, the help box 
appears and tells the user, which registers the result will be 
placed on. 

There are different restrictions that are implemented to 
prevent the interface from crashing. The first restriction is 
that users can only select one button from each category. 
When the user selects another button in same category, the 
previous selection operation will be deactivated. The second 
restriction is that user cannot type anything in result textbox. 
The third restriction is that user can only type “1” or “0”, up 
to 7 bits to input textbox. Input is converted to 7 bits by 
appending “0” even if user types less than 7 bits. 

When the serial communication interface receives data 
from NEXYS 4 board, it goes through simple test before it 
appears on result textbox. Since only ASCII character 
coming from board is ether “1” or “0” or “Carriage Return”, 
the system compares each ASCII character with these three 
possible character. If it does not match, system output 
“ERROR” instead of result.  

C. Microprocessor Control Unit 
The control unit performs several key functions for 

the operation of the microprocessor. The control unit 
manages the flow of data from bus to register, sends the 
operation code to the ALU, keeps the correct timing of 
every operation and finally tells the TX unit when to 
transmit data to the user interface.  

Figure 5 shows the design of the control unit. The 
major components of the control units include a Finite 
State Machine (FSM), a two to four decoder and a 9-bit 
register. 

 
Figure 5: Control Circuit Schematic 

 
Initially the control unit waits for the finish signal 

of the RX unit and loads the instruction to the IR register 
of the control unit. This occurs during state S1.  
 State S2 is where the control unit, based on the 
instruction code, prepares to perform the desired 
operation. To achieve this the appropriate value for the 
multiplexer selector is sent out and the desired memory 
location is enabled. For some instructions like load to Rx 
and copy from Ry to Rx, this is enough and then the 
control unit transitions to state S27. At state S27, the 
control unit outputs a high “done” signal and waits for 
its enable signal (w in the coding) to return to ‘0’. When 

this occurs, the control unit’s “done” signal tells the TX 
unit to begin transmission of data back to the user 
interface. An interesting fact is that this occurs at the end 
of every operation, so unless the load out operation is 
selected, the value displayed on the user interface is not 
a final value that the user may want.  
 For the vast majority of operations, the transition 
from S2 to S27 requires two additional states to process 
a single operation. For example, to implement a typical 
operation, the FSM concatenates ‘1’ & Rx and sends the 
correct select signal to allow the value of Rx to be 
loaded onto register A of the ALU. From this point the 
Finite State Machine transitions to a state SQa. In state 
SQa a concatenation of ‘1’ & Ry selects which value to 
load onto the main 16-bit bus and therefore is used as the 
B value within the ALU. (This is the method used to 
select Rx in the previous state.) Additionally, the control 
unit sends a specific operation code to the ALU and 
enables the G register. For all but the division operations 
SQa only requires one clock cycle. The result of the 
operation is typically loaded onto register G. From SQa 
the FSM transitions to SQb. Universally SQb selects for 
the value stored on register G to be loaded onto Rx. 
After one clock cycle the FSM transitions from SQb to 
state S27.  
 As mentioned before in S27, the control unit sends 
out a “done” signal, which acts as the initialization 
signal for transmission to the user interface to begin, and 
then transitions back to S1 waiting for a new operation 
to be given and processed.  
 

D. Operations 
The operations for the 16-bit microprocessor composed 

of a total of 27 operations, which consisted of 21 operations 
in the ALU, plus an additional 6 operations outside the ALU. 
The operations within the ALU were split into two 
categories: arithmetic and logic. The arithmetic portion 
consisted of increment (A+1), decrement (A-1), addition, 
subtraction, absolute subtraction, multiplication, left shift, 
and right shift.  The logic portion consisted of 1’s 
compliment, AND, OR, NAND, NOR, XOR, XNOR, 
greater than (outputs greater input), less than (outputs 
smaller input), equals to, binary to gray, gray to binary, and a 
reset function. The multiplier was the only operation out of 
the 27 operations that took in the least significant 8-bits out 
of the 16-bit input. The reason why the inputs were trimmed 
was to insure that the output from the ALU did not exceed 
16-bits. All the operations in the ALU took a total of one 
clock-cycle to compute. 

In addition to the 21 operations in the ALU, 4 of the 6 
operations, consisting of load in, load in to a register, load 
out, copy, are computed by the 4 registers (R0, R1, R2, R3). 
The rest of the 6 operations, consisting of division and 
modulus, are computed in a separate component. The 
purpose of having the division and modulus functions 
outside the ALU is because these two functions require a 
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total of 16 clock cycles to compute. Therefore, if the user 
wants to carry out an operation from the ALU, there would 
be no reason to wait 16 clock cycles to compute the output 
when it could be computed in 1 clock cycle.  The input for 
the two functions, as well as all of the functions from the 
ALU, comes from a register (A) and from the Bus (B).  

III. EXPERIMENTAL SETUP  
During development, the project was divided into the 

following four components: UART receiver, UART 
transmitter, ALU, and control unit.  

In order to verify the functionality of each operation of 
the ALU, a functional simulation was used to confirm each 
signal value.  Then a timing simulation was used to check 
the timing. After these simulations, the ALU was combined 
with the control unit for further testing. Again, both 
functional simulation and timing simulation was performed 
to verify the basic functionality.  

The control unit and the ALU were then implemented to 
the NEXYS 4 board.  It took a 5-bit operational instruction, a 
4-bit register selection, and a 7-bit input controlled by 16 
switches, and outputting the result to 16 LEDs on the board. 
The testing was successful and was able to confirm that all 
functions were working properly within the scope of control 
unit. 

Checking the functionality of the UART receiver was 
challenging, as input data came from outside the board. 
Since NEXYS 4 board uses a UART to program the board, it 
was not possible to loop back the output back to board for 
simulation. In order to check, the receiver goes through all of 
the states in the FSM, decreased the counter to 2, and 
performed the functional simulation. At this stage, we were 
able to discover that the receiver block from “FPGA 
Prototyping by VHDL Examples” book [1] resets the block 
when reset is “1”. The problem was solved by flipping the 
reset signal going to the block. Then the code was 
implemented to the board, taking the input from the UART, 
and outputting the received instruction set to the LEDs. After 
a few modifications, we confirmed that the instruction sent 
from the computer was correctly displayed on the LEDs.  

A similar process was used for the testing of the UART 
transmitter. An initial functional simulation was performed 
to check that the states in the FSM were moving at the 
expected timing. The transmitting order of a bit was also 
checked during this process by comparing the order with a 
working single ASCII character transmitter. Then the code 
was implemented to the NEXYS 4 board, taking inputs from 
the 16 switches, enable signal from a button, and outputting 
to the UART. A few modifications were done to a counter 
that counts the timing in between the transmitting cycle to 
minimize an extra waiting time. 

After confirming the functionality of each component, 
everything was put together for the final testing. At this 
point, since we are using the input from the UART, we 
cannot do a functional or timing simulation. The code was 
implemented to the NEXSYS 4 board, taking inputs from the 
UART, and then outputting to the UART. The instruction 
code was displayed on the LED to confirm that the board 
received the correct instruction. By using a custom serial 

communication interface, every possible operational 
instruction and register combination was tested. After 
confirming all of the results, we concluded that our 
microprocessor system was functioning correctly. 

IV. RESULTS 
Testing of the Microprocessor was done in several 

different stages. After the ALU was completed, a behavioral 
simulation was devised to test the 21 different operations that 
were contained inside the component. Once it proved to be 
successful, a top file, consisting of every component except 
the UART receiver and transmitter was created and tested. 
To insure that all bugs were accounted for, a behavior 
simulation, seen in Figure 6 (reference appendix), and a 
hardware implementation were used to test every operation. 
As seen in the behavioral simulation in Figure 6, 4 unique 
binary numbers were inputted into separate registers and 
multiple operations, which include left-shift, right-shift, 
addition, absolute subtraction, and multiplication 
respectively, were checked for correctness. Once both 
variations of testing were complete and successful, a final 
top file was created, consisting of the previous top file and 
the UART components.  A third and final test was 
completed, testing all the operations using the Visual Basics 
graphical user interface to input the instructions as well as 
the inputs. With the help of the interface, the implementation 
as well as the testing proved to be much more efficient and 
user friendly than using the NEXYS 4 board. Overall, the 
Microprocessor proved to be successful and all bugs found 
were accounted for. 

CONCLUSIONS 
Throughout the designing stage, constructing stage, and 

the testing stage of the 16-bit Microprocessor, the group 
learned how to work together effectively.  Upon completion 
of the project, a 16-bit microprocessor was successfully 
operational.  Data was able to be loaded onto 1 of 4 registers 
and 1 of 27 operations could be used to manipulate the data.  
Users were able to enter data via the Visual Basics interface.  
Operations were clearly defined, along with clues dealing 
with which registers would be used during the selected 
operation.  Once the user entered a 7-bit binary number, the 
data was transmitted using the UART, which handled the 
communication between the NEXYS 4 and the Visual Basic 
user interface.  Once the microprocessor completed the 
operation, data was transmitted back to the Visual Basics 
interface and the result was displayed, thus the user never 
touched the NEXSYS 4 board.   

Overall, this project helped deepened the group’s 
understanding of designing a microprocessor, constructing it, 
and finally testing it.  It was satisfying to see how individual 
pieces of knowledge throughout the semester were combined 
and used to complete one project.      
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APPENDIX 
 

Figure 6: ALU and Control Unit Testbench

 
Input and instructions for testbench in Figure 6 are as follows: 
  
Input <= "0000100"; IR <= "000000000";      -- Load in 4     
IR <= "011000000";                                        -- Save in register R0   
Input <= "0000110"; IR <= "000000000";      -- Load in 6     
IR <= "011000001";                                        -- Save in register R1   
Input <= "0000010"; IR <= "000000000";      -- Load in 2     
IR <= "011000010";                                        -- Save in register R2   
Input <= "0000011"; IR <= "000000000";      -- Load in 3    
IR <= "011000011";                                        -- Save in register R3   
IR <= "010100000";       -- Left-shift register R0, new value: 8   
IR <= "010110001";        -- Right-shift register R1, new value: 3   
IR <= "001101011";                                  -- Add register R2 with R3, new value in register R3: 5  
IR <= "010001101";                                        -- Absolute subtract register R1 from R3, new value in register R1: 2  
IR <= "010011110";                                        -- Multiply register R2 and R3, new value in register R2: 10   
IR <= "011010000";                                        -- Load Output R0   
IR <= "011010100";                                        -- Load Output R1  
IR <= "011011000";                                        -- Load Output R2  
IR <= "011011100";                                        -- Load Output R3 


